Learn More
Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin I on Ser 774 and Ser 778 in vitro, which are identical to(More)
Small molecules modulating synaptic vesicle endocytosis (SVE) may ultimately be useful for diseases where pathological neurotransmission is implicated. Only a small number of specific SVE modulators have been identified to date. Slow progress is due to the laborious nature of traditional approaches to study SVE, in which nerve terminals are identified and(More)
Maintaining synaptic transmission requires replenishment of docked synaptic vesicles within the readily releasable pool (RRP) from synaptic vesicle clusters in the synapsin-bound reserve pool. We show that synapsin forms a complex with phosphatidylinositol 3-kinase (PI 3-kinase) in intact nerve terminals and that synapsin-associated kinase activity(More)
The septins are GTPase enzymes with multiple roles in cytokinesis, cell polarity or exocytosis. The proteins from the mammalian septin genes are called Sept1-10. Most are expressed in multiple tissues, but the mRNA for Sept5 (CDCrel-1) and Sept3 (G-septin) appear to be primarily expressed in brain. Sept3 is phosphorylated by cGMP-dependent protein kinase I(More)
  • 1