Chandra M. Khantwal

  • Citations Per Year
Learn More
CLC secondary active transporters exchange Cl(-) for H(+). Crystal structures have suggested that the conformational change from occluded to outward-facing states is unusually simple, involving only the rotation of a conserved glutamate (Gluex) upon its protonation. Using (19)F NMR, we show that as [H(+)] is increased to protonate Gluex and enrich the(More)
OxlT, the oxalate transporter of Oxalobacter formigenes, is a member of the Major Facilitator Superfamily of transporters (MFS), one of the largest groups of membrane proteins with substantial relevance to solute transport physiology, pharmacology, and possible drug development. MFS proteins transport a wide range of substrates such as organic and inorganic(More)
CLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways.(More)
  • 1