Learn More
BACKGROUND Autophagy is a cellular process of degradation of macromolecules and organelles and activated under nutritional stress. Statins are a class of inhibitors of 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a key enzyme in synthesis of cholesterol. Epidemiological studies have shown that statin use decreases the incidence of advanced(More)
Cdc42-associated tyrosine kinase 1 (ACK1) is a specific down-stream effector of Cdc42, a Rho family small G-protein. Previous studies have shown that ACK1 interacts with clathrin heavy chain and is involved in clathrin-coated vesicle endocytosis. Here we report that ACK1 interacted with epidermal growth factor receptor (EGFR) upon EGF stimulation via a(More)
Protein geranylgeranylation (GGylation) is an important biochemical process for many cellular signaling molecules. Previous studies have shown that GGylation is essential for cell survival in many types of cancer. However, the molecular mechanism mediating the cell survival effect remains elusive. In this report, we show that the Hippo pathway mediates(More)
Nedd4 E3 ligases are members of the HECT E3 ubiquitin ligase family and regulate ubiquitination-mediated protein degradation. In this report, we demonstrate that calcium releases the C2 domain-mediated auto-inhibition in both Nedd4-1 and Nedd4-2. Calcium disrupts binding of the C2 domain to the HECT domain. Consistent with this, calcium activates the E3(More)
ACK (activated Cdc42-associated tyrosine kinase) (also Tnk2) is an ubiquitin-binding protein and plays an important role in ligand-induced and ubiquitination-mediated degradation of epidermal growth factor receptor (EGFR). Here we report that ACK is ubiquitinated by HECT E3 ubiquitin ligase Nedd4-1 and degraded along with EGFR in response to EGF(More)
Our previous studies have demonstrated that atorvastatin induces autophagy in the androgen receptor negative prostate cancer PC3 cells through inhibition of geranylgeranyl biosynthesis [Parikh et al., Prostate. 70(9): 971-981 (2010)]. This study attempts to elucidate the molecular mechanism underlying atorvastatin-induced autophagy in PC3 cells. PC3 cells(More)
PDZ binding-kinase (PBK) (also named T-lymphokine-activated killer cell-originated protein kinase (TOPK)), a serine/threonine kinase, is tightly controlled in normal tissues but elevated in many tumors, and functions in tumorigenesis and metastasis. However, the signaling that regulates expression of PBK in cancer cells remains elusive. Here we show that(More)
ACK [activated Cdc42 (cell division cycle 42)-associated tyrosine kinase; also called TNK2 (tyrosine kinase, non-receptor, 2)] is activated in response to multiple cellular signals, including cell adhesion, growth factor receptors and heterotrimeric G-protein-coupled receptor signalling. However, the molecular mechanism underlying activation of ACK remains(More)
ACK2 (activated Cdc42-associated tyrosine kinase 2) is a specific downstream effector for Cdc42, a member of the Rho family of small G-proteins. ACK2 interacts with clathrin, an endocytic vesicle coating protein, and SH3PX1, a sorting nexin, and is involved in clathrin-mediated endocytosis. While searching for proteins that interact with ACK2, we found that(More)
Ligand-induced receptor degradation is an important process for down-regulation of plasma membrane receptors. While epidermal growth factor receptor (EGFR) is rapidly internalised and degraded upon ligand stimulation, ErbB2, the closest member to EGFR in ErbB receptor family, is resistant in ligand-induced degradation. To understand the molecular mechanisms(More)