• Publications
  • Influence
ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning
TLDR
Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation. Expand
Semi-supervised sequence tagging with bidirectional language models
TLDR
A general semi-supervised approach for adding pre- trained context embeddings from bidirectional language models to NLP systems and apply it to sequence labeling tasks, surpassing previous systems that use other forms of transfer or joint learning with additional labeled data and task specific gazetteers. Expand
WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale
TLDR
This work introduces WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset, and establishes new state-of-the-art results on five related benchmarks. Expand
TabEL: Entity Linking in Web Tables
TLDR
TabEL differs from previous work by weakening the assumption that the semantics of a table can be mapped to pre-defined types and relations found in the target KB, and enforces soft constraints in the form of a graphical model that assigns higher likelihood to sets of entities that tend to co-occur in Wikipedia documents and tables. Expand
Construction of the Literature Graph in Semantic Scholar
TLDR
This paper reduces literature graph construction into familiar NLP tasks, point out research challenges due to differences from standard formulations of these tasks, and report empirical results for each task. Expand
Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning
TLDR
This paper introduces Cosmos QA, a large-scale dataset of 35,600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions, and proposes a new architecture that improves over the competitive baselines. Expand
Abductive Commonsense Reasoning
TLDR
This study introduces a challenge dataset, ART, that consists of over 20k commonsense narrative contexts and 200k explanations, and conceptualizes two new tasks -- Abductive NLI: a multiple-choice question answering task for choosing the more likely explanation, and Abduction NLG: a conditional generation task for explaining given observations in natural language. Expand
CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning
TLDR
A constrained text generation task, CommonGen associated with a benchmark dataset, to explicitly test machines for the ability of generative commonsense reasoning, and demonstrates that the learned generative Commonsense reasoning capability can be transferred to improve downstream tasks such as CommonsenseQA by generating additional context. Expand
Methods for exploring and mining tables on Wikipedia
TLDR
This work presents WikiTables, a Web application that enables users to interactively explore tabular knowledge extracted from Wikipedia that substantially outperforms baselines on the novel task of automatically joining together disparate tables to uncover "interesting" relationships between table columns. Expand
Content-Based Citation Recommendation
TLDR
It is shown empirically that, although adding metadata improves the performance on standard metrics, it favors self-citations which are less useful in a citation recommendation setup and released an online portal for citation recommendation based on this method. Expand
...
1
2
3
4
5
...