Learn More
Long-term synaptic plasticity is both protein synthesis-dependent and synapse-specific. Therefore, the identity of the newly synthesized proteins, their localization, and mechanism of regulation are critical to our understanding of this process. Tissue plasminogen activator (tPA) is a secreted protease required for some forms of long-term synaptic(More)
A crucial step in directed cell migration is the recruitment of cytoskeletal regulatory and signaling proteins to the leading edge of the cell. One protein localized to the leading edge of a migrating astrocyte is beta-catenin. Using an in vitro wound-healing assay, we show that the localization of beta-catenin to the leading edge is dependent upon new(More)
The ability of neurons to modify synaptic connections is critical for proper brain development and function in the adult. It is now clear that changes in synaptic strength are often accompanied by changes in synaptic morphology. This synaptic plasticity can be maintained for varying lengths of time depending on the type of neuronal activity that first(More)
Neuronal morphogenesis, the growth and arborization of neuronal processes, is an essential component of brain development. Two important but seemingly disparate components regulating neuronal morphology have previously been described. In the hippocampus, neurotrophins, particularly brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3), act to(More)
  • 1