Learn More
Mitochondrial DNA (mtDNA) copy number regulation is altered in several human mtDNA-mutation diseases and it is also important in a variety of normal physiological processes. Mitochondrial transcription factor A (TFAM) is essential for human mtDNA transcription and we demonstrate here that it is also a key regulator of mtDNA copy number. We initially(More)
The human mitochondrial genome involves over 1,000 genes, dispersed across the maternally inherited mitochondrial DNA (mtDNA) and the biparentally inherited nuclear DNA (nDNA). The mtDNA encodes 13 core proteins that determine the efficiency of the mitochondrial energy-generating system, oxidative phosphorylation (OXPHOS), plus the RNA genes for their(More)
Regulation of mammalian mtDNA gene expression is critical for altering oxidative phosphorylation capacity in response to physiological demands and disease processes. The basal machinery for initiation of mtDNA transcription has been molecularly defined, but the mechanisms regulating its activity are poorly understood. In this study, we show that MTERF3 is a(More)
Two novel antimicrobial peptides were isolated and characterized from the roots of shepherd's purse, Capsella bursa-pastoris. These antimicrobial peptides, named shepherin I and shepherin II, consist of 28 and 38 amino acids, respectively, and are glycine- and histidine-rich peptides. Shepherin I and shepherin II have 67.9% and 65.8% (mol/mol) glycine,(More)
Regulation of mtDNA expression is critical for maintaining cellular energy homeostasis and may, in principle, occur at many different levels. The leucine-rich pentatricopeptide repeat containing (LRPPRC) protein regulates mitochondrial mRNA stability and an amino-acid substitution of this protein causes the French-Canadian type of Leigh syndrome (LSFC), a(More)
The 3' end of the rRNA of the small ribosomal subunit contains two extremely highly conserved dimethylated adenines. This modification and the responsible methyltransferases are present in all three domains of life, but its function has remained elusive. We have disrupted the mouse Tfb1m gene encoding a mitochondrial protein homologous to bacterial(More)
The human mitochondrial transcription termination factor (mTERF) is involved in the regulation of transcription of the mitochondrial genome. Similarity searches and phylogenetic analysis demonstrate that mTERF is a member of large and complex protein family (the MTERF family) shared amongst metazoans and plants. Interestingly, we identify three novel MTERF(More)
Replication of the mammalian mitochondrial DNA (mtDNA) is dependent on the minimal replisome, consisting of the heterotrimeric mtDNA polymerase (POLG), the hexameric DNA helicase TWINKLE and the tetrameric single-stranded DNA-binding protein (mtSSB). TWINKLE has been shown to unwind DNA during the replication process and many disease-causing mutations have(More)
Mammalian mitochondrial DNA (mtDNA) is packaged by mitochondrial transcription factor A (TFAM) into mitochondrial nucleoids that are of key importance in controlling the transmission and expression of mtDNA. Nucleoid ultrastructure is poorly defined, and therefore we used a combination of biochemistry, superresolution microscopy, and electron microscopy to(More)
Here we report the expansion of the genetic code of Mus musculus with various unnatural amino acids including Nɛ-acetyl-lysine. Stable integration of transgenes encoding an engineered Nɛ-acetyl-lysyl-tRNA synthetase (AcKRS)/tRNAPyl pair into the mouse genome enables site-specific incorporation of unnatural amino acids into a target protein in response to(More)