Learn More
Polynomial segment models (PSMs), which are generalization of the hidden Markov models (HMMs), have opened an alternative research direction for speech recognition. However, they have been limited by their computational complexity. Traditionally, any change in PSM segment boundary requires likelihood recomputation of all the frames within the segment. This(More)
One of the difficulties in using the polynomial segment model (PSM) to capture the temporal correlations within a phonetic segment is the lack of an efficient training algorithm comparable with the Baum-Welch algorithm in HMM. In our previous paper, we introduced a recursive likelihood computation algorithm for PSM recognition which can perform(More)
  • 1