Learn More
Drugs that block N-methyl-d-aspartate glutamate receptors or that promote gamma-aminobutyric acid type A inhibition trigger neuroapoptosis in the developing rodent brain. Propofol reportedly interacts with both gamma-aminobutyric acid type A and N-methyl-d-aspartate glutamate receptors, but has not been adequately evaluated for its ability to induce(More)
Effects of load (i.e., the number of stimuli in the display) have been observed in multiple-frame studies using a consistent mapping of stimuli to responses (e.g., Fisher, 1982, 1984). In a series of four experiments, it is shown that these effects are not the consequence of differences across the high- and low-load conditions in either decision noise or(More)
Transient exposure of immature animals during the brain growth spurt period to ethanol triggers neuroapoptosis in the developing brain. Here we report that lithium, when administered in a single, well-tolerated dose to infant mice, suppresses spontaneous neuroapoptosis that occurs naturally in the developing brain, and prevents ethanol from triggering(More)
Recently, it was reported that anesthetizing infant rats for 6 h with a combination of anesthetic drugs (midazolam, nitrous oxide, isoflurane) caused widespread apoptotic neurodegeneration in the developing brain, followed by lifelong cognitive deficits. It has also been reported that ketamine triggers neuroapoptosis in the infant rat brain if administered(More)
Administration of ethanol to rodents during the synaptogenesis period induces extensive apoptotic neurodegeneration in the developing brain. This neurotoxicity may explain the reduced brain mass and neurobehavioral disturbances in human Fetal Alcohol Syndrome (FAS). Here, we report binge-like exposure of infant mice to ethanol on a single postnatal day(More)
Acute, transient exposure to ethanol causes a widespread pattern of caspase-3 activation and neuroapoptosis in the developing rodent brain. To determine whether caspase-3 activation is an essential step in ethanol-induced developmental neuroapoptosis, we treated homozygous caspase-3 knockout mice or wild-type mice on postnatal day 7 with an(More)
Neuronal ceroid lipofuscinosces/Batten disease (NCL) is a devastating group of neurodegenerative diseases caused by genetic disruptions in lysosomal function. Cathepsin D (CD) is a major lysosomal protease, and mutations in CD that render it enzymatically defective have been reported recently in subsets of NCL patients. The targeted deletion of CD in mice(More)
To study the efficacy of adrenocorticotrophic hormone (ACTH) in treating Taiwanese children with West syndrome (WS) and the impact on long-term prognosis, 66 patients with WS (54 symptomatic and 12 cryptogenic) were collected from 1987 to 1998 in a medical center in Taiwan. A total of 53 patients were enrolled in this study and treated with ACTH at the(More)
Exposure of infant rats or mice to ethanol on a single occasion during the period of rapid synaptogenesis can cause extensive apoptotic neurodegeneration throughout the developing CNS. Prior studies were designed to assess the effects of large doses of ethanol (comparable to heavy binge drinking), whereas in the present study, we sought to determine what(More)
Drugs that suppress neuronal activity, including general anesthetics used in pediatric and obstetric medicine, trigger neuroapoptosis in the developing rodent brain. Exposure of infant rats for 6 hours to a combination of anesthetic drugs (midazolam, nitrous oxide, isoflurane) reportedly causes widespread apoptotic neurodegeneration, followed by lifelong(More)