Learn More
Administration of ethanol to rodents during the synaptogenesis period induces extensive apoptotic neurodegeneration in the developing brain. This neurotoxicity may explain the reduced brain mass and neurobehavioral disturbances in human Fetal Alcohol Syndrome (FAS). Here, we report binge-like exposure of infant mice to ethanol on a single postnatal day(More)
Drugs that block N-methyl-d-aspartate glutamate receptors or that promote gamma-aminobutyric acid type A inhibition trigger neuroapoptosis in the developing rodent brain. Propofol reportedly interacts with both gamma-aminobutyric acid type A and N-methyl-d-aspartate glutamate receptors, but has not been adequately evaluated for its ability to induce(More)
Recently, it was reported that anesthetizing infant rats for 6 h with a combination of anesthetic drugs (midazolam, nitrous oxide, isoflurane) caused widespread apoptotic neurodegeneration in the developing brain, followed by lifelong cognitive deficits. It has also been reported that ketamine triggers neuroapoptosis in the infant rat brain if administered(More)
Drugs that suppress neuronal activity, including general anesthetics used in pediatric and obstetric medicine, trigger neuroapoptosis in the developing rodent brain. Exposure of infant rats for 6 hours to a combination of anesthetic drugs (midazolam, nitrous oxide, isoflurane) reportedly causes widespread apoptotic neurodegeneration, followed by lifelong(More)
PURPOSE Ethanol is known to have deleterious effects on the human fetal nervous system (fetal alcohol syndrome), including components of the visual system, but only modest progress has been made in understanding these effects. The authors have recently demonstrated that, during the period of synaptogenesis, a single episode of ethanol intoxication lasting(More)
Transient exposure of immature animals during the brain growth spurt period to ethanol triggers neuroapoptosis in the developing brain. Here we report that lithium, when administered in a single, well-tolerated dose to infant mice, suppresses spontaneous neuroapoptosis that occurs naturally in the developing brain, and prevents ethanol from triggering(More)
One hundred and twenty unpremedicated patients undergoing gynaecological surgery were randomly allocated to one of three equal treatment groups to assess the effectiveness of ethyl chloride in producing instant skin anaesthesia to prevent the pain of venepuncture from a 20 G cannula. They received either no anaesthetic, 0.2 ml one per cent lidocaine plain(More)
Acute, transient exposure to ethanol causes a widespread pattern of caspase-3 activation and neuroapoptosis in the developing rodent brain. To determine whether caspase-3 activation is an essential step in ethanol-induced developmental neuroapoptosis, we treated homozygous caspase-3 knockout mice or wild-type mice on postnatal day 7 with an(More)