Learn More
Humic acids (HAs) that extracted from leachates from semi-aerobic and anaerobic landfills test field at different stabilization times were characterized by elemental composition, Fourier transform infrared spectroscopy (FTIR), and Carbon-13 Cross-Polarization Magic-Angle-Spinning Nuclear Magnetic Resonance ((13)C CP/MAS NMR). The higher sulfur (S) content(More)
Fluorescence excitation-emission matrix spectroscopy (EEMs) combined with fluorescence regional integration (FRI) analysis was used to investigate the composition and transformation of humic acid (HA) and fulvic acid (FA) from landfill. The EEMs of HAs at different landfill ages were characterized by two typical fluorescence chromophores with Ex/Em pairs at(More)
The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption(More)
To elucidate the influence of landfill gas (LFG) emission on environmental factors, an ecological investigation that was primarily concerned with the characteristics of vegetation, cover soil, and solid waste in the landfill was carried out. Temporal and spatial variations in vegetation diversity and coverage and their effects on reducing the emission of(More)
UNLABELLED Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled(More)
An equilibrium dialysis combined with a (14)C-labeling method was used to study the abiotic association of phthalic acid esters (PAEs) with dissolved humic substances (HS) and its influence on the fate of PAEs in landfill leachate. Elemental analysis and FTIR spectral analysis were carried out on the humic acid (HA) and fulvic acid (FA) components of HS to(More)
Mercury (Hg) distribution and migration in different landfill stabilization processes were evaluated in this study. Wide ranges of Hg concentrations were observed because of the heterogeneity and variability of landfill refuse. In addition, temporally variable conditions, including pH, organic matter, and vegetation cover, which influence Hg migration in(More)
To assess the reclamation feasibility of a landfill, the characteristics, distribution, and mobility of heavy metals in the landfill were investigated. The refuse was characterized as containing high concentrations of heavy metals, a relatively high pH, and a high ratio of NH(4)-N to total nitrogen (TN). The results of heavy metal distribution showed that(More)
Humic acid (HA) and fulvic acid (FA) extracted from landfills at different landfill ages were characterized by elemental composition, (13)C CP/MAS NMR, and TMAH-Py-GC/MS. The elemental composition analysis revealed high O/C and low H/C ratios in the FA, indicating a high proportion of O-alkyl and carboxylic acids in the FA. The analytical results of (13)C(More)
To improve the regeneration ability of biomimetic fat cell (BFC), an innovative agent for hydrophobic organic contaminants (HOCs) removal, BFC was modified through introducing 1, 3, 5-benzenetricarboxyl trichloride with trifunctional group and heterocyclic piperazine in this research. Modified biomimetic fat cell (MBFC) has a good lindane removal capacity(More)