Learn More
Pollen-pistil interactions are crucial for controlling plant mating. For example, S-RNase-based self-incompatibility prevents inbreeding in diverse angiosperm species. S-RNases are thought to function as specific cytotoxins that inhibit pollen that has an S-haplotype that matches one of those in the pistil. Thus, pollen and pistil factors interact to(More)
High-copy-number transposable elements comprise the majority of eukaryotic genomes where they are major contributors to gene and genome evolution. However, it remains unclear how a host genome can survive a rapid burst of hundreds or thousands of insertions because such bursts are exceedingly rare in nature and therefore difficult to observe in real time.(More)
An active miniature inverted repeat transposable element (MITE), mPing, was discovered by computer-assisted analysis of rice genome sequence. The mPing element is mobile in rice cell culture and in a few rice strains where it has been amplified to >1,000 copies during recent domestication. However, determination of the transposase source and(More)
Miniature inverted repeat transposable elements (MITEs) are widespread in eukaryotic genomes, where they can attain high copy numbers despite a lack of coding capacity. However, little is known about how they originate and amplify. We performed a genome-wide screen of functional interactions between Stowaway MITEs and potential transposases in the rice(More)
PURPOSE OF REVIEW Proline metabolism impacts a number of regulatory targets in both animals and plants and is especially important in cancer. Glutamine, a related amino acid, is considered second in importance only to glucose as a substrate for tumors. But proline and glutamine are interconvertible and linked in their metabolism. In animals, proline and(More)
R ecent research suggests that chro-matin-modifying enzymes are metabolic sensors regulating gene expression. Epigenetics is linked to metabolomics in response to the cellular microenvi-ronment. Specific metabolites involved in this sensing mechanism include S-adenosylmethionine, acetyl-CoA, alphaketoglutarate and NAD +. Although the core metabolic pathways(More)
Biochemical interactions between the pollen and the pistil allow plants fine control over fertilization. S-RNase-based pollen rejection is among the most widespread and best understood of these interactions. At least three plant families have S-RNase-based self-incompatibility (SI) systems, and S-RNases have also been implicated in interspecific pollen(More)
Studies in metabolism and cancer have characterized changes in core pathways involving glucose and glutamine, emphasizing the provision of substrates for building cell mass. But recent findings suggest that pathways previously considered peripheral may play a critical role providing mechanisms for cell regulation. Several of these mechanisms involve the(More)
BACKGROUND PIF/Harbinger is the most recently discovered DNA transposon superfamily and is now known to populate genomes from fungi to plants to animals. Mobilization of superfamily members requires two separate element-encoded proteins (ORF1 and TPase). Members of this superfamily also mobilize Tourist-like miniature inverted repeat transposable elements(More)
The metabolism of the nonessential amino acid proline contributes to tumor metabolic reprogramming. Previously we showed that MYC increases proline biosynthesis (PB) from glutamine. Here we show MYC increases the expression of the enzymes in PB at both protein and mRNA levels. Blockade of PB decreases tumor cell growth and energy production. Addition of(More)