Learn More
Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of bacterial enteric infections worldwide, causing ∼100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United States alone. These illnesses have been linked to consumption of contaminated animal products and vegetables. Currently, other than thermal inactivation,(More)
Phytases are hydrolytic enzymes that initiate the release of phosphate from phytate (myo-inositol hexakisphosphate), the major phosphorus (P) form in animal feeds of plant origin. These enzymes can be supplemented in diets for food animals to improve P nutrition and to reduce P pollution of animal excreta. This mini-review provides a synopsis of the concept(More)
BACKGROUND AND AIMS The clinical onset and severity of intestinal disorders in humans and animals can be profoundly impacted by early life stress. Here we investigated the impact of early weaning stress in pigs on intestinal physiology, clinical disease, and immune response to subsequent challenge with enterotoxigenic F18 E. coli (ETEC). METHODOLOGY Pigs(More)
Microarray technology is now available for many livestock species, and animal scientists are beginning to utilize the technology to address issues of importance to animal agriculture. This review discusses how microarray technology has been applied to study global gene expression changes in skeletal muscle. For example, microarrays have been used to(More)
A phytase gene (appA) from Escherichia coli was cloned into Streptomyces lividans and expressed as an extracellular protein which was then compared with the same enzyme expressed in Pichia pastoris. The phytase expressed in S. lividans was not glycosylated and had a molecular mass of 45 kDa. Compared with the glycosylated phytase expressed in P. pastoris,(More)
The objective of this study was to determine possible synergistic effects of supplementing one of three fungal phytases: Aspergillus fumitagus PhyA (AFP),A. niger PhyA (ANP), or Peniophora lyci phytase (PLP) with an Escherichia coli AppA phytase (EP) in diets for pigs. Three experiments, each lasting for 4 wk, were conducted with a total of 106 weanling(More)
Dietary phytase supplementation improves bioavailabilities of phytate-bound minerals such as P, Ca, and Zn to pigs, but its effect on Fe utilization is not clear. The efficacy of phytase in releasing phytate-bound Fe and P from soybean meal in vitro and in improving dietary Fe bioavailability for hemoglobin repletion in young, anemic pigs was examined. In(More)
The efficacies of colicins E1 and N against Escherichia coli strains responsible for postweaning diarrhea and edema disease, two of the most prevalent disease problems for pigs in the United States, were determined in vitro. These proteins may provide an environmentally sound means for the prevention of these infections in swine.
High iron consumption has been proposed to relate to an increase in the risk of colon cancer, whereas high levels of supplemental sodium phytate effectively reduce iron-induced oxidative injury and reverse iron-dependent augmentation of colorectal tumorigenesis. However, the protective role of intrinsic dietary phytate has not been determined. In this(More)
Dietary phosphorus (P) is essential to bone growth and turnover; however, little research has focused on the genetic mechanisms controlling P utilization. Understanding the interactions between genetics and dietary P that optimize bone integrity could provide novel interventions for osteoporosis. Thirty-six pigs from two sire lines known to differ in bone(More)