Ch Schneider

  • Citations Per Year
Learn More
We implement the proof of principle for the quantum walk of one ion in a linear ion trap. With a single-step fidelity exceeding 0.99, we perform three steps of an asymmetric walk on the line. We clearly reveal the differences to its classical counterpart if we allow the walker or ion to take all classical paths simultaneously. Quantum interferences enforce(More)
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable(More)
  • 1