Cezary Waszczak

Learn More
Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified(More)
In plants, fluctuation of the redox balance by altered levels of reactive oxygen species (ROS) can affect many aspects of cellular physiology. ROS homeostasis is governed by a diversified set of antioxidant systems. Perturbation of this homeostasis leads to transient or permanent changes in the redox status and is exploited by plants in different stress(More)
The genes coding for the core metabolic enzymes of the photorespiratory pathway that allows plants with C3-type photosynthesis to survive in an oxygen-rich atmosphere, have been largely discovered in genetic screens aimed to isolate mutants that are unviable under ambient air. As an exception, glycolate oxidase (GOX) mutants with a photorespiratory(More)
The nuclear male sterility gene ms8 is expected to facilitate the production of sweet pepper (Capsicum annuum L.) hybrids as it provides means for hybridization without the labor-intensive hand emasculation of female inbred lines. The development of molecular markers linked to ms8 locus will help the breeding practice for the selection of hybrid parental(More)
Plants generate reactive oxygen species (ROS) as part of their metabolism and in response to various external stress factors, potentially causing significant damage to biomolecules and cell structures. During the course of evolution, plants have adapted to ROS toxicity, and use ROS as signalling messengers that activate defence responses. Cysteine (Cys)(More)
Guard cells form stomatal pores that optimize photosynthetic carbon dioxide uptake with minimal water loss. Stomatal movements are controlled by complex signaling networks that respond to environmental and endogenous signals. Regulation of stomatal aperture requires coordinated activity of reactive oxygen species (ROS)-generating enzymes, signaling(More)
Gynodioecy, the coexistence of hermaphrodites and females (i.e. male-sterile plants) in natural plant populations, most often results from polymorphism at genetic loci involved in a particular interaction between the nuclear and cytoplasmic genetic compartments (cytonuclear epistasis): cytoplasmic male sterility (CMS). Although CMS clearly contributes to(More)
Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis(More)
In plants, receptor-like kinases (RLKs) and extracellular reactive oxygen species (ROS) contribute to the communication between the environment and the interior of the cell. Apoplastic ROS production is a frequent result of RLK signaling in a multitude of cellular processes; thus, by their nature, these two signaling components are inherently linked.(More)
Climate change results in increased intensity and frequency of extreme abiotic and biotic stress events. In plants, reactive oxygen species (ROS) accumulate in proportion to the level of stress and are major signalling and regulatory metabolites coordinating growth, defence, acclimation and cell death. Our knowledge of ROS homeostasis, sensing, and(More)