Cesar Magen

Learn More
In Lake Matano, Indonesia, the world's largest known ferruginous basin, more than 50% of authigenic organic matter is degraded through methanogenesis, despite high abundances of Fe (hydr)oxides in the lake sediments. Biogenic CH₄ accumulates to high concentrations (up to 1.4 mmol L⁻¹) in the anoxic bottom waters, which contain a total of 7.4 × 10⁵ tons of(More)
Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots(More)
The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling (SOC) in surface or interface states. Its potential for conversion between charge and spin currents has been theoretically predicted but never clearly demonstrated for surfaces or interfaces of metals. Here we present experiments evidencing(More)
Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping(More)
Nanolithography techniques in a scanning electron microscope/focused ion beam are very attractive tools for a number of synthetic processes, including the fabrication of ferromagnetic nano-objects, with potential applications in magnetic storage or magnetic sensing. One of the most versatile techniques is the focused electron beam induced deposition, an(More)
Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centres in solution-derived high-temperature superconductor nanocomposites through generation of(More)
As an incommensurate epitaxy, van der Waals epitaxy allows defect-free crystals to grow on substrates even with a large lattice mismatch. Furthermore, van der Waals epitaxy is proposed as a universal platform where heteroepitaxy can be achieved irrespective of the nature of the overlayer material and the method of crystallization. Here we demonstrate van(More)
Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets, ferroelectrics and superconductors. In this context, complex oxides(More)
Remanent state and magnetization reversal processes of a series of cobalt antidot arrays with a fixed hole diameter (d ≈ 55 nm) and an array periodicity (p) ranging between 95 and 524 nm were studied by in situ Lorentz microscopy (LM) as a function of the magnetic field. At remanence, defocused LM images showed the periodicity dependence of the magnetic(More)
We explore the origins of perpendicular magnetic anisotropy in epitaxial and textured Co/Ni(111) superlattices using a combination of thin-film growth, structural characterization, x-ray magnetic circular dichroism (XMCD), and ab initio calculations. Transmission electron microscopy and x-ray diffraction experiments allow us to show that the " bulk "(More)