Celso Eduardo Benedetti

Learn More
The phytotoxin coronatine and the plant growth regulator methyl jasmonate (MeJA) caused similar growth-inhibitory effects on Arabidopsis seedlings. To test whether these two compounds have similar action, 14 independent coi1 (coronatine-insensitive) mutants of Arabidopsis were selected. The mutants segregated as single recessive Mendelian markers, and all(More)
The phytotoxin coronatine and the plant growth regulator methyl jasmonate (MeJA) inhibit the growth of Arabidopsis seedlings. Coronatine and MeJA induced the accumulation of an approximately 29-kD protein in wild-type seedlings but not in seedlings of the coi1 mutant, which is insensitive to both compounds. The approximately 29-kD protein was recognized not(More)
The Arabidopsis gene ATHCOR1, which encodes the CORI1 (coronatine-induced) protein, was expressed in bacterial cells. Soluble recombinant CORI1 was purified and shown to possess chlorophyllase (Chlase) activity in vitro. To determine its activity in vivo, wild-type Arabidopsis and coi1 mutant, which lacks ATHCOR1 transcripts, were transformed with sense and(More)
A cDNA clone (AtPUMP) encoding a plant uncoupling mitochondrial protein was isolated from Arabidopsis thaliana. The cDNA contains an open reading frame of 921 nucleotides encoding 306 amino acids (predicted molecular weight 32,708). The predicted polypeptide is 81% identical and 89% similar to the potato UCP-like protein, and includes an energy transfer(More)
Oxidative conditions must be generated in the endoplasmic reticulum (ER) to allow disulfide bond formation in secretory proteins. A family of conserved genes, termed ERO for ER oxidoreductins, plays a key role in this process. We have previously described the human gene ERO1-L, which complements several phenotypic traits of the yeast thermo-sensitive mutant(More)
Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas axonopodis pv. aurantifolii pathotype C (Xaa) are responsible for citrus canker disease; however, while Xac causes canker on all citrus varieties, Xaa is restricted to Mexican lime, and in sweet oranges it triggers a defence response. To gain insights into the differential pathogenicity exhibited by Xac(More)
Many plant pathogenic bacteria rely on effector proteins to suppress defense and manipulate host cell mechanisms to cause disease. The effector protein PthA modulates the host transcriptome to promote citrus canker. PthA possesses unusual protein architecture with an internal region encompassing variable numbers of near-identical tandem repeats of 34 amino(More)
Coronatine is a phytotoxin produced by some plant-pathogenic bacteria. It has been shown that coronatine mimics the action of methyl jasmonate (MeJA) in plants. MeJA is a plant-signaling molecule involved in stress responses such as wounding and pathogen attack. In Arabidopsis thaliana, MeJA is essential for pollen grain development. The coi1 (for(More)
Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL) effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood.(More)
The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys)(More)