Celia Gomar

Learn More
An improved viral vector for cancer gene therapy should be capable of infecting tumors with high efficiency, inducing specific and high-level expression of transgene in the tumor and selectively destroying tumor cells. In the design of such a vector to treat hepatocellular carcinoma, we took advantage of (a) the high infectivity of adenoviruses for hepatic(More)
Transforming growth factor β (TGF-β) is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs) appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide(More)
Scavenger receptor class B type I (SR-B1) binds pathogen-associated molecular patterns participating in the regulation of the inflammatory reaction but there is no information regarding potential interactions between SR-B1 and the interferon system. Herein, we report that SR-B1 ligands strongly regulate the transcriptional response to interferon α (IFNα)(More)
Interferon alpha linked to apolipoprotein A-I has been recently proposed as an improved interferon-based therapy. In the present study, we aimed to develop a computational model to gain further insight into the in vivo behaviour of this new fusion protein. In order to facilitate in vivo evaluation of interferon and the fusion protein without altering their(More)
  • 1