Celia E. Dominguez

Learn More
Huntington's disease (HD) is a devastating, genetic neurodegenerative disease caused by a tri-nucleotide expansion in exon 1 of the huntingtin gene. HD is clinically characterized by chorea, emotional and psychiatric disturbances and cognitive deficits with later symptoms including rigidity and dementia. Pathologically, the cortico-striatal pathway is(More)
Histone deacetylase (HDAC) inhibitors have received considerable attention as potential therapeutics for a variety of cancers and neurological disorders. Recent publications on a class of pimelic diphenylamide HDAC inhibitors have highlighted their promise in the treatment of the neurodegenerative diseases Friedreich's ataxia and Huntington's disease, based(More)
BACKGROUND The upward trend in industrial nations in the incidence of male genitourinary (GU) conditions may be attributed to increased exposure to endocrine disruptors. Polybrominated biphenyl (PBB), a brominated flame retardant, is one such suspected endocrine disruptor. OBJECTIVE We investigated the relationship between maternal serum levels of PBBs(More)
To evaluate the potential of memantine as a therapeutic agent for Huntington's disease (HD) we have undertaken a series of in vitro, ex vivo and whole animal studies to characterize its pharmacokinetics (PK) and pharmacodynamics (PD) in rats and mice. Results from these studies will enable determination of memantine exposures needed to engage the related(More)
Huntington's disease is a neurodegenerative disorder caused by mutations in the CAG tract of huntingtin. Several studies in HD cellular and rodent systems have identified disturbances in cyclic nucleotide signaling, which might be relevant to pathogenesis and therapeutic intervention. To investigate whether selective phosphodiesterase (PDE) inhibitors can(More)
Cyclic adenosine monophosphate (cAMP) signalling plays an important role in synaptic plasticity and information processing in the hippocampal and basal ganglia systems. The augmentation of cAMP signalling through the selective inhibition of phosphodiesterases represents a viable strategy to treat disorders associated with dysfunction of these circuits. The(More)
RATIONALE Since the discovery of the HTT gene in 1993, numerous animal models have been developed to study the progression of Huntington's disease, as well as to evaluate potential new therapeutics. In the present study we used small animal positron emission tomography (PET) to characterize the expression of molecular targets in the recently reported HD(More)
Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is(More)
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that devastates patients and their families. It is caused by expansion of the CAG repeat in the huntingtin gene (HTT) and characterized pathologically by the loss of pyramidal neurons in several cortical areas, striatal medium spiny neurons, and hypothalamic neurons. Clinically, a(More)
A system of two solid microlenses with uncoupled optical properties is presented. This structure has been designed in order to have one lens as a reference, while the other one can be mechanically tuneable. The reference lens presents a diameter of 2 ␮m and it is placed in the optical axis of the mechanically tuneable lens, which has a diameter of 10 ␮m.(More)