Celia C. H. Chen

Learn More
The crystal structure of pyruvate phosphate dikinase, a histidyl multiphosphotransfer enzyme that synthesizes adenosine triphosphate, reveals a three-domain molecule in which the phosphohistidine domain is flanked by the nucleotide and the phosphoenolpyruvate/pyruvate domains, with the two substrate binding sites approximately 45 angstroms apart. The modes(More)
Two site-directed mutant enzymes of the class A beta-lactamase from Staphylococcus aureus PC1 were produced with the goal of blocking the site that in the native enzyme is occupied by the proposed hydrolytic water molecule. The crystal structures of these two mutant enzymes, N170Q and N170M, have been determined and refined at 2.2 and 2.0 A, respectively.(More)
Bacterial transport of many sugars, coupled to their phosphorylation, is carried out by the phosphoenolpyruvate (PEP):sugar phosphotransferase system and involves five phosphoryl group transfer reactions. Sugar translocation initiates with the Mg(2+)-dependent phosphorylation of enzyme I (EI) by PEP. Crystals of Escherichia coli EI were obtained by mixing(More)
Crystals of pyruvate phosphate dikinase in complex with a substrate analogue inhibitor, phosphonopyruvate (K(i) = 3 microM), have been obtained in the presence of Mg(2+). The structure has been determined and refined at 2.2 A resolution, revealing that the Mg(2+)-bound phosphonopyruvate binds in the alpha/beta-barrel's central channel, at the C-termini of(More)
Phosphonates allow certain organisms to thrive in otherwise hostile environments, and 2-aminoethylphosphonate (AEP) is a precursor of many cellular phosphonates. AEP transaminase (AEPT) is an enzyme essential to phosphonate synthesis and degradation pathways. The crystal structure of AEP transaminase was determined by multiwavelength anomalous diffraction(More)
Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration(More)
Two mutant beta-lactamases from Staphylococcus aureus PC1 which probe key catalytic residues have been produced by site-directed mutagenesis. In the S70A enzyme, the nucleophilic group that attacks the beta-lactam carbonyl carbon atom was eliminated. Consequently, the kcat values for hydrolysis of benzylpenicillin and nitrocefin have been reduced by(More)
The crystal structure of beta-lactamase from Staphylococcus aureus inactivated by p-nitrophenyl[[N-(benzyloxycarbonyl)amino]methyl]phosphonate, a methylphosphonate monoester monoanion inhibitor, has been determined and refined at 2.3 A resolution. The structure reveals a tetrahedral phosphorus covalently bonded to the O gamma atom of the active site serine,(More)
The serine-beta-lactamases hydrolyze beta-lactam antibiotics in a reaction that proceeds via an acyl-enzyme intermediate. The double mutation, E166D:N170Q, of the class A enzyme from Staphylococcus aureus results in a protein incapable of deacylation. The crystal structure of this beta-lactamase, determined at 2.3 A resolution, shows that except for the(More)
Pyruvate phosphate dikinase (PPDK) catalyzes the reversible conversion of phosphoenolpyruvate (PEP), AMP, and Pi to pyruvate and ATP. The enzyme contains two remotely located reaction centers: the nucleotide partial reaction takes place at the N-terminal domain, and the PEP/pyruvate partial reaction takes place at the C-terminal domain. A central domain,(More)