Learn More
(␮-O) 2 in superoxidized manganese catalase has been suggested as the basis for inactivity of this oxidation state; G. argued against a Mn valence change on S 2 3 S 3 , and Yachandra et al. (4) have proposed that one-electron oxidation of the bridging oxo group (or groups) occurs. However, a similar bridging oxyl ligand formulation for intermediate X in(More)
The photosynthetic processes that lead to water oxidation involve an evolution in time from photon dynamics to photochemically-driven electron transfer to coupled electron/proton chemistry. The redox-active tyrosine, Y(Z), is the component at which the proton currents necessary for water oxidation are switched on. The thermodynamic and kinetic implications(More)
Recent magnetic-resonance work on YŻ suggests that this species exhibits considerable motional flexibility in its functional site and that its phenol oxygen is not involved in a well-ordered hydrogen-bond interaction (Tang et al., submitted; Tommos et al., in press). Both of these observations are inconsistent with a simple electron-transfer function for(More)
Catalytically essential side-chain radicals have been recognized in a growing number of redox enzymes. Here we present a novel approach to study this class of redox cofactors. Our aim is to construct a de novo protein, a radical maquette, that will provide a protein framework in which to investigate how side-chain radicals are generated, controlled, and(More)
The use of side chains as catalytic cofactors for protein mediated redox chemistry raises significant mechanistic issues as to how these amino acids are activated toward radical chemistry in a controlled manner. De novo protein design has been used to examine the structural basis for the creation and maintenance of a tryptophanyl radical in a three-helix(More)
The electrochemistry of 2,6-dimethylbenzoquinone (DMBQ) has been characterized for three different systems: DMBQ freely solvated in aqueous buffer; DMBQ bound to a neutral, blocked cysteine (N-acetyl-L-cysteine methyl ester) and the resulting DMBQ-bCys compound solvated in aqueous buffer; and DMBQ bound to a small model protein denoted alpha(3)C. The goal(More)
2-Mercaptophenol-α₃C serves as a biomimetic model for enzymes that use tyrosine residues in redox catalysis and multistep electron transfer. This model protein was tailored for electrochemical studies of phenol oxidation and reduction with specific emphasis on the redox-driven protonic reactions occurring at the phenol oxygen. This protein contains a(More)
Reversible voltammograms and a voltammetry half-wave potential versus solution pH diagram are described for a protein tyrosine radical. This work required a de novo designed tyrosine-radical protein displaying a unique combination of structural and electrochemical properties. The α(3)Y protein is structurally stable across a broad pH range. The redox-active(More)
Amino-acid radical enzymes are often highly complex structures containing multiple protein subunits and cofactors. These properties have in many cases hampered the detailed characterization of their amino-acid redox cofactors. To address this problem, a range of approaches has recently been developed in which a common strategy is to reduce the complexity of(More)