Learn More
Leptin biosynthesis in adipose cells in vivo is increased by food intake and decreased by food deprivation. However, the mechanism that couples leptin production to food intake remains unknown. We found that addition of leucine to isolated rat adipocytes significantly increased leptin production by these cells, suggesting that postprandial leptin levels may(More)
In the last two decades, there has been a tremendous increase in the understanding of stem cell biology, including the field of cutaneous stem cells. Extensive stem cell research and potential clinical applications have provided new perspectives in the use of stem cells in the treatment of human skin disorders such as severe burns and wounds, as well as(More)
We previously demonstrated that keratin 15 expressing cells present in the bulge region of hair follicles exhibit properties of adult stem cells. We have now established and characterized an immortalized adult epithelial stem cell line derived from cells isolated from the human hair follicle bulge region. Telogen hair follicles from human skin were(More)
The major leptin-containing membrane compartment was identified and characterized in rat adipose cells by means of equilibrium density and velocity sucrose gradient centrifugation. This compartment appears to be different from peptide-containing secretory granules present in neuronal, endocrine, and exocrine cells, as well as from insulin-sensitive(More)
Epithelial stem cells within the human hair follicle are critical for hair development, hair cycling, wound healing, and tumorigenesis. We and others have previously shown that the hair follicle bulge area contains keratinocyte stem cells, whereas the hair matrix represents the proliferating and differentiating transit-amplifying (TA) cell compartment. In(More)
Adipose cells produce and secrete several physiologically important proteins, such as lipoprotein lipase (LPL), leptin, adipsin, Acrp30, etc. However, secretory pathways in adipocytes have not been characterized, and vesicular carriers responsible for the accumulation and transport of secreted proteins have not been identified. We have compared the(More)
The epithelial-mesenchymal interactions between keratinocyte stem cells and dermal papilla (DP) cells are crucial for normal development of the hair follicle as well as during hair cycling. During the cyclical regrowth of a new lower follicle, the multipotent hair follicle stem cells are stimulated to proliferate and differentiate through interactions with(More)
  • 1