Cecilia Hägerhäll

Learn More
Respiratory chain Complex I or NADH:quinone oxidoreductase catalyzes oxidation of NADH in the mitochondrial matrix or bacterial cytoplasm and reduction of quinone in the membrane, coupled to pumping of 4H(+)/2e(-) across the membrane. The same enzyme complex is also capable of the reverse reaction, i.e. Deltamu(H(+))-supported NAD(+) reduction. The(More)
Nicotinamide adenine dinucleotide-reduced form (NADH):quinone oxidoreductase (respiratory Complex I), F420H2 oxidoreductase and complex, membrane-bound NiFe-hydrogenase contain protein subunits homologous to a certain type of bona fide antiporters. In Complex I, these polypeptides (NuoL/ND5, NuoM/ND4, NuoN/ND2) are most likely core components of the proton(More)
Succinate:menaquinone-7 oxidoreductase (complex II) of the Gram-positive bacterium Bacillus subtilis consists of equimolar amounts of three polypeptides; a 65-kDa FAD-containing polypeptide, a 28-kDa iron-sulfur cluster containing polypeptide, and a 23-kDa membrane-spanning cytochrome b558 polypeptide. The enzyme complex was overproduced 2-3-fold in(More)
Many succinate:quinone oxidoreductases in bacteria and mitochondria, i.e. succinate:quinone reductases and fumarate reductases, contain in the membrane anchor a cytochrome b whose structure and function is poorly understood. Based on biochemical data and polypeptide sequence information, we show that the anchors in different organisms are related despite an(More)
The membrane-anchoring subunit of Bacillus subtilis succinate:menaquinone reductase is a protein of 202 residues containing two protoheme IX groups with bis-histidine axial ligation. Residues His13, His28, His70, His113, and His155 are the possible heme ligands. The transmembrane topology of this cytochrome was analyzed using fusions to alkaline(More)
Succinate:quinone reductases (SQRs) and quinol:fumarate reductases (QFRs) each contain a bi-, a tri- and a tetra-nuclear iron-sulfur cluster. The C-terminal half of the iron-sulfur protein subunit of these enzymes shows two fully conserved motifs of cysteine residues, stereotypical for ligands of [3Fe-4S] and [4Fe-4S] clusters. To analyze the functional(More)
MrpA and MrpD are homologous to NuoL, NuoM and NuoN in complex I over the first 14 transmembrane helices. In this work, the C-terminal domain of MrpA, outside this conserved area, was investigated. The transmembrane orientation was found to correspond to that of NuoJ in complex I. We have previously demonstrated that the subunit NuoK is homologous to MrpC.(More)
The EPR and thermodynamic properties of semiquinone (SQ) species stabilized by mammalian succinate:quinone reductase (SQR) in situ in the mitochondrial membrane and in the isolated enzyme have been well documented. The equivalent semiquinones in bacterial membranes have not yet been characterized, either in SQR or quinol:fumarate reductase (QFR) in situ. In(More)
2-n-Heptyl 4-hydroxyquinoline-N-oxide (HOQNO) inhibits the succinate:quinone oxidoreductase activity of isolated and membrane-bound succinate:menaquinone oxidoreductase of B. subtilis. The inhibition pattern resembles closely that observed for alpha-thenoyltrifluoroacetone and carboxins in the mitochondrial succinate:ubiquinone oxidoreductase: ca. 90% of(More)