Cecelia A. Shertz

Learn More
Sex is shrouded in mystery. Not only does it preferentially occur in the dark for both fungi and many animals, but evolutionary biologists continue to debate its benefits given costs in light of its pervasive nature. Experimental studies of the benefits and costs of sexual reproduction with fungi as model systems have begun to provide evidence that the(More)
The zygomycete Mucor circinelloides is an opportunistic fungal pathogen that commonly infects patients with malignancies, diabetes mellitus, and solid organ transplants. Despite the widespread use of antifungal therapy in the management of zygomycosis, the incidence of infections continues to rise among immunocompromised individuals. In this study, we(More)
The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ(More)
In eukaryotes from yeast to humans, the Tor signaling cascade responds to nutrients and growth factors to orchestrate cell growth and proliferation. The central elements of this signaling cascade are the Tor protein kinases, which are the targets of the potent anti-proliferative and immunosuppressive natural product rapamycin [1]. Most organisms, including(More)
The ability to combine a selective capture strategy with on chip MALDI-TOF analysis allows for rapid, sensitive analysis of a variety of different analytes. In this overview a series of applications of capture enhanced laser desorption ionization time of flight (CELDI-TOF) mass spectrometry are described. The key feature of the assay is an off-chip capture(More)
The immunoglobulin degrading enzyme of Streptococcus pyogenes, IdeS, is an unusual cysteine protease produced by group A streptococci for which the only known substrate is immunoglobulin G (IgG). To date, IdeS has not been found to cleave any of the known synthetic substrates that other cysteine proteases hydrolyse, thus making the development of an IdeS(More)
  • 1