Catia Arbizzani

Learn More
In this work, for the first time, we demonstrate a supercapacitive microbial fuel cell which integrates the energy harvesting function of a microbial fuel cell (MFC) with the high-power operation of an internal supercapacitor. The pursued strategies are: (i) the increase of the cell voltage by the use of high potential cathodes like bilirubin oxidase (BOx)(More)
Six substituted 5-pyrimidinols were synthesized, and the thermochemistry and kinetics of their reactions with free radicals were studied and compared to those of equivalently substituted phenols. To assess their potential as hydrogen-atom donors to free radicals, we measured their O-H bond dissociation enthalpies (BDEs) using the radical equilibration(More)
For the first time, a paper based enzymatic fuel cell is used as self-recharged supercapacitor. In this supercapacitive enzymatic fuel cell (SC-EFC), the supercapacitive features of the electrodes are exploited to demonstrate high power output under pulse operation. Glucose dehydrogenase-based anode and bilirubin oxidase-based cathode were assembled to a(More)
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are(More)
Supercapacitive microbial fuel cells with various anode and cathode dimensions were investigated in order to determine the effect on cell capacitance and delivered power quality. The cathode size was shown to be the limiting component of the system in contrast to anode size. By doubling the cathode area, the peak power output was improved by roughly 120%(More)
In this work, four different supercapacitive microbial fuel cells (SC-MFCs) with carbon brush as the anode and an air-breathing cathode with Fe-Aminoantipyrine (Fe-AAPyr) as the catalyst have been investigated using galvanostatic discharges. The maximum power (Pmax) obtained was in the range from 1.7 mW to 1.9 mW for each SC-MFC. This in-series connection(More)
The performance of graphite//LiNi0.5 Mn1.5 O4 (LNMO) cells, both electrodes of which are made using water-soluble sodium carboxymethyl cellulose (CMC) binder, is reported for the first time. The full cell performed outstandingly over 400 cycles in the conventional electrolyte ethylene carbonate/dimethyl carbonate-1 m LiPF6 , and the delivered specific(More)
  • 1