Learn More
A methylation protection assay was used in a novel manner to demonstrate a specific bovine protein-mitochondrial DNA (mtDNA) interaction within the organelle (in organello). The protected domain, located near the D-loop 3' end, encompasses a conserved termination-associated sequence (TAS) element which is thought to be involved in the regulation of mtDNA(More)
REGULATION OF SMOOTH MUSCLE CELL (SMC) GROWTH: Accelerated growth of SMC is known to play an integral role in atherosclerotic lesion formation as well as post-angioplasty restenosis, and is a characteristic feature in arteries of hypertensive patients and animals. There has thus been extensive interest in defining both positive and negative regulators of(More)
While it is well established that phenotypic modulation of vascular smooth muscle cells (VSMCs) contributes to the development and progression of vascular lesions, little is known regarding the molecular mechanisms of phenotypic modulation in vivo. Here we show that vascular injury reduces transcription of VSMC differentiation marker genes, and we identify(More)
The goal of the present study was to determine the molecular mechanism whereby transforming growth factor beta (TGFbeta) increases smooth muscle (SM) alpha-actin expression. Confluent, growth-arrested rat aortic smooth muscle cells (SMC) were transiently transfected with various SM alpha-actin promoter/chloramphenicol acetyltransferase deletion mutants and(More)
The mucin MUC1 is typically aberrantly glycosylated by epithelial cancer cells manifested by truncated O-linked saccharides. The resultant glycopeptide epitopes can bind cell surface major histocompatibility complex (MHC) molecules and are susceptible to recognition by cytotoxic T lymphocytes (CTLs), whereas aberrantly glycosylated MUC1 protein on the tumor(More)
The smooth muscle myosin heavy chain (SM-MHC) gene encodes a major contractile protein whose expression exclusively marks the smooth muscle cell (SMC) lineage. To better understand smooth muscle differentiation at the transcriptional level, we have initiated studies to identify those DNA sequences critical for expression of the SM-MHC gene. Here we report(More)
The approximately 190-bp centromeric repeat monomers of the spur-winged lapwing (Vanellus spinosus, Charadriidae), the Chilean flamingo (Phoenicopterus chilensis, Phoenicopteridae), the sarus crane (Grus antigone, Gruidae), parrots (Psittacidae), waterfowl (Anatidae), and the merlin (Falco columbarius, Falconidae) contain elements that are interspecifically(More)
Slipped mispairing between repeated sequences during DNA replication is an important mutagenic event. It is one of several suggested mechanisms thought to be responsible for generating polymorphic regions and large-scale deletions found in mammalian mitochondrial DNA. In the porcine mitochondrial genome, a domain carrying a 10-bp tandemly repeated sequence(More)
Using in organello footprint analysis, we demonstrate that within human placental mitochondria there is a high level of protein-DNA binding at regularly phased intervals throughout a 500-bp region encompassing the D-loop DNA origins and two promoter regions. Comparison with in vitro DNase I protection studies indicates that this protein-DNA interaction is(More)
Up to 6.8% of the parrot (Psittaciformes) genome consists of a tandemly repeated, 190-bp sequence (P1) located in the centromere of many if not all chromosomes. Monomer repeats from 10 different psittacine species representing four subfamilies were isolated and cloned. The intraspecific sequence variation ranged from 1.5 to 7%. The interspecific sequence(More)