Learn More
To investigate the role of astrocytes in regulating synaptic transmission, we generated inducible transgenic mice that express a dominant-negative SNARE domain selectively in astrocytes to block the release of transmitters from these glial cells. By releasing adenosine triphosphate, which accumulates as adenosine, astrocytes tonically suppressed synaptic(More)
In the postnatal subventricular zone (SVZ), S phase entry of neural progenitor cells (NPCs) correlates with a local increase in blood flow. However, the cellular mechanism controlling this hemodynamic response remains unknown. We show that a subpopulation of SVZ cells, astrocyte-like cells or B-cells, sends projections ensheathing pericytes on SVZ(More)
Tuberous sclerosis complex (TSC) is an autosomal dominant monogenetic disorder that is characterized by the formation of benign tumors in several organs as well as brain malformations and neuronal defects. TSC is caused by inactivating mutations in one of two genes, TSC1 and TSC2, resulting in increased activity of the mammalian Target of Rapamycin (mTOR).(More)
Signaling through GABA(A) receptors controls neural progenitor cell (NPC) development in vitro and is altered in schizophrenic and autistic individuals. However, the in vivo function of GABA(A) signaling on neural stem cell proliferation, and ultimately neurogenesis, remains unknown. To examine GABA(A) function in vivo, we electroporated plasmids encoding(More)
The role of putrescine, spermidine and spermine in phorbol 12-myris-tate-13-acetate (PMA)-induced macrophage differentiation was examined in human HL-60 and U-937 myeloid leukemia cells. Unlike other poly-amines, spermine affected this differentiation by acting as a negative regulator. This negative regulation was established by showing that the PMA-induced(More)
The generation of the most abundant neurons of the cerebellum, the granule cells, relies on a balance between clonal expansion and apoptosis during the first 10 days after birth in the external germinal layer (EGL). The amino acid glutamate controls such critical phases of cell development in other systems through specific receptors such as metabotropic(More)
  • 1