Cathrin Hogrefe

Learn More
INTRODUCTION The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage(More)
Injury to articular cartilage is often associated with an inflammatory reaction and frequently results in the development of post-traumatic osteoarthritis (post-traumatic OA). Cell death, inflammation and loss of proteoglycans participate in these mechanisms with p38MAPK being one of the pivotal signaling kinases. Therefore, the interaction of trauma and of(More)
Blunt trauma of articular cartilage, often resulting from accidents or sports injuries, is associated with local inflammatory reactions and represents a major risk factor for development of post-traumatic osteoarthritis. TNF-α is increased in synovial fluid early after trauma, potentiates injury-induced proteoglycan degradation and may act proapoptotic(More)
BACKGROUND Clinically oriented and easy to handle animal models are urgently needed to test pharmacologic treatment of cartilage trauma to reduce the resulting tissue damage by chondrocyte apoptosis and induction of matrix-degrading enzymes. AIM To develop a biomechanically defined cartilage trauma model. MATERIAL AND METHODS We constructed a novel(More)
BACKGROUND Sport injuries of the knee often lead to posttraumatic arthritis. In addition to direct damage of the cartilage, trauma-associated intra-articular bleeding may cause hemarthrosis. Both blood exposure and trauma are known to induce cell death and inflammation and to enhance proteoglycan release in cartilage. HYPOTHESIS Blood exposure increases(More)
  • 1