Catherine Yuriko Teisset

Learn More
We demonstrate an optical parametric chirped-pulse amplifier producing infrared 20 fs (3-optical-cycle) pulses with a stable carrier-envelope phase. The amplifier is seeded with self-phase-stabilized pulses obtained by optical rectification of the output of an ultrabroadband Ti:sapphire oscillator. Energies of -80 microJ with a well-suppressed background of(More)
We demonstrate a significant simplification of the scheme for few-cycle Optical Parametric Chirped Pulse Amplification (OPCPA) which results in the elimination of a picosecond's master oscillator and electronic synchronization loops. A fraction of a broadband seed pulse centered at 760 nm from a 70-MHz Ti:sapphire oscillator was frequency-shifted in a(More)
We produce carrier-envelope-phase-stable 15.7-fs (2-cycle) 740μJ pulses at the 2.1-μm carrier wavelength, from a three-stage optical parametric chirped-pulse amplifier system, pumped by an optically synchronized 49-ps 11-mJ Nd:YLF laser. A novel seed pulse spectral shaping method is used to ascertain the true amplified seed energy and the parametric(More)
We report on the development of highly dispersive mirrors for chirped-pulse oscillators (CPO) and amplifiers (CPA). In this proof-of-concept study, we demonstrate the usability of highly dispersive multilayer mirrors for high-energy femtosecond oscillators, namely for i) a chirped-pulse Ti:Sa oscillator and ii) an Yb:YAG disk oscillator. In both cases a(More)
We report an optically synchronized picosecond pump laser for optical parametric amplifiers based on an Yb:YAG thin-disk amplifier. At 3 kHz repetition rate, pulse energies of 25 mJ with 1.6 ps pulse duration were achieved with an rms fluctuation in pulse energy of <0.7% by utilizing a broadly intermittent single-energy regime in the deterministic chaos of(More)
Short-pulse-pumped optical parametric chirped pulse amplification (OPCPA) requires a precise temporal overlap of the interacting pulses in the nonlinear crystal to achieve stable performance. We present active synchronization of the ps-pump pulses and the broadband seed pulses used in an OPCPA system with a residual timing jitter below 2 fs. This(More)
We produce carrier-envelope-phase-stable 15.7-fs (2-cycle) 740-microJ pulses at the 2.1-microm carrier wavelength, from a three-stage optical parametric chirped-pulse amplifier system, pumped by an optically synchronized 49-ps 11-mJ Nd:YLF laser. A novel seed pulse spectral shaping method is used to ascertain the true amplified seed energy and the(More)
We report on a CEP-stable OPCPA system reaching multi-GW peak powers at 300 kHz repetition rate. It delivers 15 W of average power, over 50 µJ of compressed pulse energy and a pulse duration below 6 fs. By implementing an additional pump-seed-synchronization, the output parameters are stabilized over hours with power fluctuations of less than 1.5%.
The balance between diffraction and index-step guiding in photonic-crystal fibers is controlled by modifying the fiber structure, leading to different wavelength dependences of the effective mode area and providing a mechanism to control nonlinear-optical phenomena. In optical fibers with a steep profile, the guided mode of the light field tends to become(More)