Catherine Papanicolaou

Learn More
The crystal structure of the catalytic core of murine terminal deoxynucleotidyltransferase (TdT) at 2.35 A resolution reveals a typical DNA polymerase beta-like fold locked in a closed form. In addition, the structures of two different binary complexes, one with an oligonucleotide primer and the other with an incoming ddATP-Co(2+) complex, show that the(More)
Terminal deoxynucleotidyl transferase (TdT) catalyzes the condensation of deoxyribonucleotides on 3'-hydroxyl ends of DNA strands in a template-independent manner and adds N-regions to gene segment junctions during V(D)J recombination. Although TdT is able to incorporate a few ribonucleotides in vitro, TdT discrimination between ribo- and(More)
A new set of energy values to predict the secondary structures in RNA molecules has been derived through a multiple-step refinement procedure. It achieves more than 80% success in predicting the cloverleaf pattern in tRNA (200 sequences tested) and more than 60% success in predicting the consensus folding of 5S RNA (100 sequences). Improvements in our(More)
Terminal deoxynucleotidyltransferase (TdT) catalyzes the addition of nucleotides to 3'-hydroxyl ends of DNA strands in a template-independent manner and has been shown to add N-regions to gene segment junctions during V(D)J recombination. TdT is highly conserved in all vertebrate species, with a second isoform, characterized by a 20-amino acid insertion(More)
Terminal deoxynucleotidyl transferase (TdT) is a highly conserved vertebrate enzyme that possesses the unique ability to catalyze the random addition of deoxynucleoside 5'-triphosphates onto the 3'-hydroxyl group of a single-stranded DNA. It plays an important role in the generation of immunoglobin and T-cell receptor diversity. TdT is usually obtained from(More)
Two TdT isoforms have been found in the mouse. The short isoform is known to add N regions to gene segment junctions during V(D)J recombination, but the role of the long (TdTL) isoform is controversial. We have shown that TdTL, although endowed with terminal transferase activity, is thermally unstable and unable to add N regions in vivo. In this study, we(More)
In vitro, misalignments of the newly synthesized (primer) strand during DNA polymerization lead to deletion and/or complex frameshift mutations. In vivo, similar misalignments of repeated and quasipalindromic DNA sequences are predicted to be intermediates of mutagenesis. The mutagenic misalignments are mediated by complementary pairing between the sequence(More)
The sequences of more than 600 frameshift mutations produced as a consequence of in vitro DNA replication on an oligonucleotide-primed, single-stranded DNA template by the Escherichia coli polymerase I enzyme (PolI) or its large fragment derivative (PolLF) were compared. Four categories of mutants were found: (1) single-base deletions, (2) base(More)
The catalytic domain of murine terminal deoxynucleotidyl transferase (TdT) has been crystallized in the space group P2(1)2(1)2(1), with unit-cell parameters a = 47.1, b = 86.2, c = 111.7 A. The crystals diffract to a resolution of 2.4 A using synchrotron radiation and a full data set has been collected from the native crystals. The enzyme was shown to be(More)
When Escherichia coli DNA polymerase I (Pol I) replicates a homopolymer, the excision/polymerization (exo/pol) ratio varies with enzyme and initiator concentration. The study of this effect in the case of poly(dA).oligo(dT) replication led us to propose a mnemonic model for Pol I, in which the 3' to 5' excision activity warms up when the enzyme is actively(More)