#### Filter Results:

#### Publication Year

2001

2017

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

While hidden class models of various types arise in many statistical applications, it is often difficult to establish the identifiability of their parameters. Focusing on models in which there is some structure of independence of some of the observed variables conditioned on hidden ones, we demonstrate a general approach for establishing identifiability… (More)

In this paper, we consider the consistency and asymptotic normality of the maximum likelihood estimator for a possibly non stationary Hidden Markov Model where the hidden state space is a separable and compact space non necessarily nite, and both the transition kernel of the hidden chain and the conditional distribution of the observations depend on a… (More)

Our concern is selecting the concentration matrix's nonzero coefficients for a sparse Gaussian graphical model in a high-dimensional setting. This corresponds to estimating the graph of conditional dependencies between the variables. We describe a novel framework taking into account a latent structure on the concentration matrix. This latent structure is… (More)

- Julien Chiquet, Alexander Smith, Gilles Grasseau, Catherine Matias, Christophe Ambroise
- Bioinformatics
- 2009

SUMMARY
The R package SIMoNe (Statistical Inference for MOdular NEtworks) enables inference of gene-regulatory networks based on partial correlation coefficients from microarray experiments. Modelling gene expression data with a Gaussian graphical model (hereafter GGM), the algorithm estimates non-zero entries of the concentration matrix, in a sparse and… (More)

While latent class models of various types arise in many statistical applications, it is often difficult to establish their identifiability. Focus-ing on models in which there is some structure of independence of some of the observed variables conditioned on hidden ones, we demonstrate a general approach for establishing identifiability, utilizing algebraic… (More)

This paper deals with parameter estimation in pair hidden Markov models (pair-HMMs). We first provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The model being biologically motivated, some restrictions with respect to the full parameter space naturally occur. Existence of two different Information divergence… (More)

- Ana Arribas-Gil, Catherine Matias
- Statistical applications in genetics and…
- 2012

This article proposes a novel approach to statistical alignment of nucleotide sequences by introducing a context dependent structure on the substitution process in the underlying evolutionary model. We propose to estimate alignments and context dependent mutation rates relying on the observation of two homologous sequences. The procedure is based on a… (More)

We propose a unified framework for studying both latent and stochastic block models , which are used to cluster simultaneously rows and columns of a data matrix. In this new framework, we study the behaviour of the groups posterior distribution, given the data. We characterize whether it is possible to asymptotically recover the actual groups on the rows… (More)

- Cristina Butucea, Catherine Matias, Christophe Pouet
- 2008

We consider a semiparametric convolution model. We observe random variables having a distribution given by the convolution of some unknown density f and some partially known noise density g. In this work, g is assumed exponentially smooth with stable law having unknown self-similarity index s. In order to ensure identifiability of the model, we restrict our… (More)

This paper deals with order identification for Markov chains with Markov regime (MCMR) in the context of finite alphabets. We define the joint order of a MCMR process in terms of the number k of states of the hidden Markov chain and the memory m of the conditional Markov chain. We study the properties of penalized maximum likelihood estimators for the… (More)