Catherine M. Robinson

  • Citations Per Year
Learn More
BACKGROUND The mechanisms by which CD4+T cells, especially CD4+ CD25+T cells, transfer allograft specific tolerance are poorly defined. The role of cytokines and the effect on antigen-presenting cells is not resolved. METHODS Anti-CD3 monoclonal antibody (mAb) therapy induced tolerance to PVG heterotopic cardiac transplantation in DA rats. Peripheral(More)
CD4+T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4+T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG(More)
CD4+T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain(More)
Transplant tolerance induced in adult animals is mediated by alloantigen-specific CD4+CD25+ T cells, yet in many models, proliferation of CD4+ T cells from hosts tolerant to specific-alloantigen in vitro is not impaired. To identify changes that may diagnose tolerance, changes in the patterns of proliferation of CD4+, CD4+CD25+, and CD4+CD25- T cells from(More)
CD4 CD25 Foxp3 T cells are regulatory/ suppressor cells (Tregs) that include nonantigen (Ag)–specific as well as Agspecific Tregs. How non–Ag-specific naive CD4 CD25 Treg develop into specific Tregs is unknown. Here, we generated adaptive Tregs by culture of naive CD4 CD25 Foxp3 T cells with allo-Ag and either interleukin-2 (IL-2) or IL-4. Within days, IL-2(More)
In rat models, CD4(+)CD25(+) T regulatory cells (Treg) play a key role in the induction and maintenance of antigen-specific transplant tolerance, especially in DA rats with PVG cardiac allografts (1, 2). We have previously described generation of alloantigen-specific Treg (Ts1), by culture of naïve natural CD4(+)CD25(+) Treg (nTreg) with specific(More)
Objective To examine if the protective effect of parasite infection on experimental autoimmune encephalomyelitis (EAE) was due to interleukin (IL)-5, a cytokine produced by a type-2 response that induces eosinophilia. We hypothesize that, in parasite infections, IL-5 also promotes expansion of antigen-specific T regulatory cells that control autoimmunity.(More)
IL-4 is thought to promote induction of transplantation tolerance and alloantigen-specific CD4(+)CD25(+) T regulatory cells (Treg). This study examined the effect of IL-4 on the induction and maintenance of the CD4(+) T regulatory cells (Treg) that mediate transplantation tolerance. Tolerance was induced in DA rats with PVG heterotopic cardiac allografts by(More)
BACKGROUND Specific transplant tolerance is mediated by CD4 T cells that die unless supported by T-cell derived cytokines and donor antigen. This study examined the role of Th1 and Th2 cytokines in the maintenance of tolerance. METHODS Tolerance to fully allogeneic PVG cardiac allografts in DA rats was induced by short-term anti-CD3 monoclonal antibody(More)
CD4(+)CD25(+)FOXP3(+)T regulatory cells (Treg) play a major role in prevention of induction and control of immune responses, and contribute to induction of immune tolerance. Natural or thymic Treg (tTreg) have non-antigen specific suppressor action. Tolerance to a specific antigen is also mediated by CD4(+)CD25(+)FOXP3(+)Treg, but the source of these cells(More)