Catherine Le Visage

Learn More
For bone tissue engineering, human Adipose Derived Stem Cells (hADSCs) are proposed to be associated with a scaffold for promoting bone regeneration. After implantation, cellularised scaffolds require a non-invasive method for monitoring their fate in vivo. The purpose of this study was to use Magnetic Resonance Imaging (MRI)-based tracking of these cells,(More)
In this study, we describe a novel in vitro reconstitution system for tracheal epithelium that could be useful for investigating the cellular and molecular interaction of epithelial and mesenchymal cells. In this system, a Transwell insert was used as a basement membrane on which adult bone marrow mesenchymal stem cells (MSCs) were cultured on the lower(More)
Recent advances in cell therapy and tissue engineering opened new windows for regenerative medicine, but still necessitate innovative noninvasive imaging technologies. We demonstrate that high-resolution magnetic resonance imaging (MRI) allows combining cellular-scale resolution with the ability to detect two cell types simultaneously at any tissue depth.(More)
PURPOSE We aimed to promote the efficacy of paclitaxel in intracavitary treatment of superficial transitional cell carcinoma of the bladder by designing bio-adhesive microspheres capable of achieving controlled release of the drug at the urothelium/urine interface. MATERIALS AND METHODS Poly(methylidene malonate 2.1.2) microspheres encapsulating(More)
A hydrogel was prepared from polysaccharides (pullulan/dextran/fucoidan) and evaluated as a novel biomaterial for Endothelial Progenitor Cell (EPC) culture. Using a cross-linking process with sodium trimetaphosphate in aqueous solution, homogeneous, transparent and easy to handle gels were obtained with a water content higher than 90%. Circular scaffolds (6(More)
Formulation of PMM 2.1.2 microparticles entrapping ovalbumin as a model protein was achieved by using a double emulsion solvent evaporation method. Parameters such as the nature of the solvent, polymer concentration and polymer molecular weight were investigated. Preparation process led to the formation of spherical and smooth particles with a mean diameter(More)
Biocompatible three-dimensional (3-D) porous scaffolds are of great interest for tissue engineering applications. We here present a novel combined freeze-drying/cross-linking process to prepare porous polysaccharide-based scaffolds. This process does not require an organic solvent or porogen agent. We unexpectedly found that cross-linking of(More)
Several studies have reported the benefits of mesenchymal stem cells (MSCs) for bone tissue engineering. However, vascularization remains one of the main obstacles that must be overcome to reconstruct large bone defects. In vitro prevascularization of the three-dimensional (3-D) constructs using co-cultures of human progenitor-derived endothelial cells(More)
Human ECFCs contribute to vascular repair. For this reason, they are considered as valuable cell therapy products in ischemic diseases. Porous scaffolds are prepared that are composed of natural polysaccharides, pullulan and dextran, by chemical crosslinking without use of organic solvents. These porous scaffolds, which have pores with an average size of 42(More)