Catherine Le Visage

Learn More
Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) was encapsulated into biodegradable, bioadhesive polymeric microparticles to enable noninvasive monitoring of their local intravesical delivery with MRI. The microparticles were characterized by contrast agent encapsulation and release kinetics, T(1) relaxation rates, and contrast enhancement in vivo.(More)
The aim of this study was to functionalize 3D porous cross-linked scaffolds with natural non-animal sulfated polysaccharide fucoidans in order to allow a delivery of vascular endothelial growth factor (VEGF) and potentiate its angiogenic activity. Microporous (20 μm) and macroporous (200 μm) scaffolds were functionalized with low, medium, or high molecular(More)
Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth(More)
Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap(More)
Hematopoietic stem cells (HSC) differentiate into megakaryocytes (MK), whose function is to release platelets. Attempts to improve in vitro platelet production have been hampered by the low amplification of MK. Providing HSC with an optimal three-dimensional (3D) architecture may favor MK differentiation by mimicking some crucial functions of the bone(More)
The repair of bone defects is of particular interest for orthopedic, oral, maxillofacial, and dental surgery. Bone loss requiring reconstruction is conventionally addressed through bone grafting. Depending on the size and the location of the defect, this method has limits and risks. Biomaterials can offer an alternative and have features supporting bone(More)
Aneurysm diagnostic is nowadays limited by the lack of technology that enables early detection and rupture risk prediction. New non invasive tools for molecular imaging are still required. In the present study, we present an innovative SPECT diagnostic tool for abdominal aortic aneurysm (AAA) produced from injectable polysaccharide microparticles(More)
Tailoring the interface interactions between a biomaterial and the surrounding tissue is a capital aspect to consider for the design of medical devices. Poly(vinyl alcohol) (PVA) hydrogels present suitable mechanical properties for various biological substitutes, however the lack of cell adhesion on their surface is often a problem. The common approach is(More)
  • 1