Catherine Lavazec

Learn More
Plasmodium falciparum possesses two multigenic families, var and rif, the products of which are expressed on the surface of infected erythrocytes, where via antigenic variation they contribute to malaria pathogenesis and evasion of antibody-mediated host immunity. The products of two smaller gene families, stevor and Pfmc-2TM, also localize to the(More)
The human malaria parasite, Plasmodium falciparum, possesses a broad repertoire of proteins that are proposed to be trafficked to the erythrocyte cytoplasm or surface, based upon the presence within these proteins of a Pexel/VTS erythrocyte-trafficking motif. This catalog includes large families of predicted 2 transmembrane (2TM) proteins, including the(More)
In the apicomplexan protozoans motility and cell invasion are mediated by the TRAP/MIC2 family of transmembrane proteins, members of which link extracellular adhesion to the intracellular actomyosin motor complex. Here we characterize a new member of the TRAP/MIC2 family, named TRAP-Like Protein (TLP), that is highly conserved within the Plasmodium genus.(More)
Anopheles gambiae is the major African vector of Plasmodium falciparum, the most deadly species of human malaria parasite and the most prevalent in Africa. Several strategies are being developed to limit the global impact of malaria via reducing transmission rates, among which are transmission-blocking vaccines (TBVs), which induce in the vertebrate host(More)
The human malaria parasite Plasmodium falciparum utilises a mechanism of antigenic variation to avoid the antibody response of its human host and thereby generates a long-term, persistent infection. This process predominantly results from systematic changes in expression of the primary erythrocyte surface antigen, a parasite-produced protein called PfEMP1(More)
The sexual phase of the malaria parasite Plasmodium falciparum is essential for transmission of the disease and is accompanied by the co-ordinated expression of sexual stage proteins. Six of these proteins belong to a highly conserved apicomplexan family of multi-domain adhesion proteins, termed PfCCps. PfCCp1, PfCCp2 and PfCCp3 are co-dependently expressed(More)
Plasmodium encodes a family of six secreted multi-domain adhesive proteins, termed PCCps, which are released from gametocytes during emergence within the mosquito midgut. The expression and cellular localization of PCCp proteins predict a role either in gametocyte development or within the mosquito midgut during the transition from gametes into the ookinete(More)
Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature gametocyte-infected erythrocytes (GIEs) sequester in host tissues. Only(More)
Reduction of transmission is critical for effective malaria control. Transmission blocking vaccines, which are intended to prevent the parasites from infecting the mosquito vectors, could target mosquito antigens that are required for the successful development of the parasite in its vector. Here we review recent advances in the identification of promising(More)
Infection of erythrocytes with the human malaria parasite, Plasmodium falciparum, results in dramatic changes to the host cell structure and morphology. The predicted functional localization of the STEVOR proteins at the erythrocyte surface suggests that they may be involved in parasite-induced modifications of the erythrocyte membrane during parasite(More)