Catherine Labruère

Learn More
Consider an oriented compact surface F of positive genus, possibly with boundary , and a finite set P of punctures in the interior of F , and define the punctured mapping class group of F relatively to P to be the group of isotopy classes of orientation-preserving homeomorphisms h : F → F which pointwise fix the boundary of F and such that h(P) = P. In this(More)
Computational topology has recently seen an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the(More)
Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the(More)
Consider an oriented compact surface F of positive genus, possibly with boundary, and a finite set P of punctures in the interior of F , and define the punctured mapping class group of F relatively to P to be the group of isotopy classes of orientation-preserving homeomorphisms h : F → F which pointwise fix the boundary of F and such that h(P) = P. In this(More)
  • 1