Catherine Grosdemange-Billiard

Learn More
In the bacterium Escherichia coli, the mevalonic-acid (MVA)-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is characterized by two branches leading separately to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). The signature of this branching is the retention of deuterium in DMAPP and the deuterium loss in IPP after(More)
In plants, two pathways are utilized for the synthesis of isopentenyl diphosphate, the universal precursor for isoprenoid biosynthesis. The key enzyme of the cytoplasmic mevalonic acid (MVA) pathway is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). Treatment of Tobacco Bright Yellow-2 (TBY-2) cells by the HMGR-specific inhibitor mevinolin led to(More)
Fosmidomycin and its analogue FR-900098 are potent inhibitors of 1-deoxy-d-xylulose 5-phosphate reducto-isomerase (DXR), the second enzyme of the MEP pathway for the biosynthesis of isoprenoids. This paper describes the synthesis of analogues of the two reverse phosphonohydroxamic acids 3 and 4, in which the length of the carbon spacer is modified, the(More)
An alternative mevalonate-independent pathway for isoprenoid biosynthesis has been recently discovered in eubacteria (including Escherichia coli) and plant plastids, although it is not fully elucidated yet. In this work, E. coli cells were engineered to utilize exogenously provided mevalonate and used to demonstrate by a genetic approach that branching of(More)
Activation of V gamma 9/V delta 2 T cells by small nonprotein Ags is frequently observed after infection with various viruses, bacteria, and eukaryotic parasites. We suggested earlier that compounds synthesized by the 2-C:-methyl-D-erythritol 4-phosphate (MEP) pathway of isopentenyl pyrophosphate synthesis are responsible for the V gamma 9/V delta 2 T cell(More)
Isoprenoid biosynthesis via the methylerythritol phosphate pathway is a target against pathogenic bacteria and the malaria parasite Plasmodium falciparum. 4-(Hydroxyamino)-4-oxobutylphosphonic acid and 4-[hydroxy(methyl)amino]-4-oxobutyl phosphonic acid, two novel inhibitors of DXR (1-deoxy-D-xylulose 5-phosphate reducto-isomerase), the second enzyme of the(More)
The mevalonate-independent methylerythritol phosphate pathway is a long overlooked metabolic pathway for isoprenoid biosynthesis. It is present in most bacteria, including pathogens and opportunistic pathogens, in some unicellular eukaryotes, including the parasite responsible for malaria, and in the chloroplasts of all phototrophic organisms. It represents(More)
The 1-deoxyxylulose 5-phosphate reductoisomerase (DXR, EC catalyzes the conversion of 1-deoxy-d-xylulose 5-phosphate (DXP) into 2-C-methyl-d-erythritol 4-phosphate (MEP). This transformation is a two-step process involving a rearrangement of DXP into the putative intermediate 2-C-methyl-d-erythrose 4-phosphate followed by a NADPH-dependent(More)
Since Mycobacterium tuberculosis sets up several multiple anti-tuberculosis drug resistance mechanisms, development of new drugs with innovative target is urgent. The methylerythritol phosphate pathway (MEP) involved in the biosynthesis of essential metabolites for the survival of mycobacteria, represents such a target. Fosmidomycin 1a and FR900098 1b, two(More)
OBJECTIVE Optimization of medium components and physicochemical parameters for antifungal production by an alkaliphilic and salt-tolerant actinomycete designated Streptomyces sp. SY-BS5; isolated from an arid region in south of Algeria. MATERIALS AND METHODS The strain showed broad-spectrum activity against pathogenic and toxinogenic fungi. Identification(More)