Learn More
About 2000 completely sequenced mitochondrial genomes are available from the NCBI RefSeq data base together with manually curated annotations of their protein-coding genes, rRNAs, and tRNAs. This annotation information, which has accumulated over two decades, has been obtained with a diverse set of computational tools and annotation strategies. Despite all(More)
Correct expression of the genetic code at translation is directly correlated with tRNA identity. This survey describes the molecular signals in tRNAs that trigger specific aminoacylations. For most tRNAs, determinants are located at the two distal extremities: the anticodon loop and the amino acid accepting stem. In a few tRNAs, however, major identity(More)
Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) has recently been defined based on a highly characteristic constellation of abnormalities observed by magnetic resonance imaging and spectroscopy. LBSL is an autosomal recessive disease, most often manifesting in early childhood. Affected individuals develop slowly(More)
Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit 'bizarre' secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and(More)
Over 150 mutations in the mitochondrial genome have been shown to be associated with human disease. Remarkably, two-thirds of them are found in tRNA genes, which constitute only one-tenth of the mitochondrial genome. A total of 22 tRNAs punctuate the genome and are produced together with 11 mRNAs and 2 rRNAs from long polycistronic primary transcripts with(More)
Direct sequencing of human mitochondrial tRNALysshows the absence of editing and the occurrence of six modified nucleotides (m1A9, m2G10, Psi27, Psi28 and hypermodified nucleotides at positions U34 and A37). This tRNA folds into the expected cloverleaf, as confirmed by structural probing with nucleases. The solution structure of the corresponding in vitro(More)
We have previously shown by chemical and enzymatic structure probing that, opposite to the native human mitochondrial tRNA(Lys), the corresponding in vitro transcript does not fold into the expected tRNA-specific cloverleaf structure. This RNA folds into a bulged hairpin, including an extended amino acid acceptor stem, an extra large loop instead of the(More)
Point mutations in mitochondrial tRNAs can cause severe multisystemic disorders such as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) and myoclonus epilepsy with ragged-red fibers (MERRF). Some of these mutations impair one or more steps of tRNA maturation and protein biosynthesis including 5'-end-processing,(More)
Post-transcriptional modifications are characteristic features of tRNAs and have been shown in a number of cases to influence both their structural and functional properties, including structure stabilization, amino-acylation and codon recognition. We have developed an approach which allows the investigation of the post-transcriptional modification patterns(More)
The mitochondrial genome of metazoan animal typically encodes 22 tRNAs. Nematode mt-tRNAs normally lack the T-stem and instead feature a replacement loop. In the class Enoplea, putative mt-tRNAs that are even further reduced have been predicted to lack both the T- and the D-arm. Here we investigate these tRNA candidates in detail. Three lines of(More)