Catherine F. Clarke

Learn More
Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently,(More)
Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of end-stage renal failure. Identification of single-gene causes of SRNS has generated some insights into its pathogenesis; however, additional genes and disease mechanisms remain obscure, and SRNS continues to be treatment refractory. Here we have identified 6 different mutations in coenzyme(More)
Identifying the molecular targets for the beneficial or detrimental effects of small-molecule drugs is an important and currently unmet challenge. We have developed a method, drug affinity responsive target stability (DARTS), which takes advantage of a reduction in the protease susceptibility of the target protein upon drug binding. DARTS is universally(More)
Identification of single-gene causes of steroid-resistant nephrotic syndrome (SRNS) has furthered the understanding of the pathogenesis of this disease. Here, using a combination of homozygosity mapping and whole human exome resequencing, we identified mutations in the aarF domain containing kinase 4 (ADCK4) gene in 15 individuals with SRNS from 8 unrelated(More)
Coenzyme Q (Q) functions in the mitochondrial respiratory chain and serves as a lipophilic antioxidant. There is increasing interest in the use of Q as a nutritional supplement. Although, the physiological significance of Q is extensively investigated in eukaryotes, ranging from yeast to human, the eukaryotic Q biosynthesis pathway is best characterized in(More)
Trichomonas vaginalis is a unicellular microaerophilic eukaryote that lacks mitochondria yet contains an alternative organelle, the hydrogenosome, involved in pyruvate metabolism. Pathways between the two organelles differ substantially: in hydrogenosomes, pyruvate oxidation is catalysed by pyruvate:ferredoxin oxidoreductase (PFOR), with electrons donated(More)
Mutations in the clk-1 gene of the nematode Caenorhabditis elegans result in slowed development, sluggish adult behaviors, and an increased lifespan. CLK-1 is a mitochondrial polypeptide with sequence and functional conservation from human to yeast. Coq7p, the Saccharomyces cerevisiae homologue, is essential for ubiquinone (coenzyme Q or Q) synthesis and(More)
Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of(More)
Ubiquinone (coenzyme Q) is a lipid that transports electrons in the respiratory chains of both prokaryotes and eukaryotes. Mutants of Saccharomyces cerevisiae deficient in ubiquinone biosynthesis fail to grow on nonfermentable carbon sources and have been classified into eight complementation groups (coq1 coq8; Tzagoloff, A., and Dieckmann, C. L.(1990)(More)
Coenzyme Q (ubiquinone or Q) is a lipid electron and proton carrier in the electron transport chain. In yeast Saccharomyces cerevisiae eleven genes, designated COQ1 through COQ9, YAH1 and ARH1, have been identified as being required for Q biosynthesis. One of these genes, COQ8 (ABC1), encodes an atypical protein kinase, containing six (I, II, III, VIB, VII,(More)