Catherine Esnous

Learn More
Liver mitochondrial beta-oxidation of LCFAs (long-chain fatty acids) is tightly regulated through inhibition of CPT1A (carnitine palmitoyltransferase 1A) by malonyl-CoA, an intermediate of lipogenesis stimulated by glucose and insulin. Moreover, CPT1A sensitivity to malonyl-CoA inhibition varies markedly depending on the physiopathological state of the(More)
We have previously proposed that changes in malonyl-CoA sensitivity of rat L-CPT1 (liver carnitine palmitoyltransferase 1) might occur through modulation of interactions between its cytosolic N- and C-terminal domains. By using a cross-linking strategy based on the trypsin-resistant folded state of L-CPT1, we have now shown the existence of such N-C (N- and(More)
Cancer cells tilt their energy production away from oxidative phosphorylation (OXPHOS) toward glycolysis during malignant progression, even when aerobic metabolism is available. Reversing this phenomenon, known as the Warburg effect, may offer a generalized anticancer strategy. In this study, we show that overexpression of the mitochondrial membrane(More)
Carnitine palmitoyltransferase (CPT) 1A catalyzes the rate-limiting step in the transport of long chain acyl-CoAs from cytoplasm to the mitochondrial matrix by converting them to acylcarnitines. Located within the outer mitochondrial membrane, CPT1A activity is inhibited by malonyl-CoA, its allosteric inhibitor. In this study, we investigate for the first(More)
Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine(More)
BACKGROUND & AIMS Despite major public health concern, therapy for non-alcoholic fatty liver, the liver manifestation of the metabolic syndrome often associated with insulin resistance (IR), remains elusive. Strategies aiming to decrease liver lipogenesis effectively corrected hepatic steatosis and IR in obese animals. However, they also indirectly(More)
The significance of short and long arm anomalies of chromosome 1 was investigated in 55 colorectal tumors comprising 41 carcinomas and 14 adenomas. The tumors were at various stages of transformation from adenoma to carcinoma. Our investigation was prompted by the observation of a p32-pter deletion on the short arm of chromosome 1 in a case of benign(More)
Cancer cells tilt their energy production away from oxidative phosphorylation (OXPHOS) toward glycolysis duringmalignant progression, even when aerobicmetabolism is available. Reversing this phenomenon, known as the Warburg effect, may offer a generalized anticancer strategy. In this study, we show that overexpression of the mitochondrialmembrane transport(More)
We previously reported that sterol-regulatory-element-binding-protein-1c (SREBP-1c) mediates insulin upregulation of genes encoding glycolytic and lipogenic enzymes in rat skeletal muscle. Here, we assessed whether glucose could regulate gene expression in contracting myotubes deriving from cultured muscle satellite cells. Glucose uptake increased twofold(More)
Impaired skeletal muscle mitochondrial fatty acid oxidation (mFAO) has been implicated in the etiology of insulin resistance. Carnitine palmitoyltransferase-1 (CPT1) is a key regulatory enzyme of mFAO whose activity is inhibited by malonyl-CoA, a lipogenic intermediate. Whereas increasing CPT1 activity in vitro has been shown to exert a protective effect(More)