Learn More
The bacterial cell wall maintains a cell's integrity while allowing growth and division. It is made up of peptidoglycan (PG), a biopolymer forming a multigigadalton bag-like structure, and, additionally in gram-positive bacteria, of covalently linked anionic polymers collectively called teichoic acids. These anionic polymers are thought to play important(More)
The trimeric influenza virus polymerase, comprising subunits PA, PB1 and PB2, is responsible for transcription and replication of the segmented viral RNA genome. Using a novel library-based screening technique called expression of soluble proteins by random incremental truncation (ESPRIT), we identified an independently folded C-terminal domain from PB2 and(More)
Bacteria surround their cytoplasmic membrane with an essential, stress-bearing peptidoglycan (PG) layer. Growing and dividing cells expand their PG layer by using membrane-anchored PG synthases, which are guided by dynamic cytoskeletal elements. In Escherichia coli, growth of the mainly single-layered PG is also regulated by outer membrane-anchored(More)
The ampG gene codes for a permease required to uptake anhydro-muropeptides into bacterial cytoplasm. Located upstream in the same operon, is another 579-base-pair-long open reading frame encoding a putative lipoprotein YajG, whose nearly complete 1H,13C,15N assignments are reported here.
Solid-state NMR spectroscopy is applied to intact peptidoglycan sacculi of the Gram-negative bacterium Escherichia coli. High-quality solid-state NMR spectra allow atom-resolved investigation of the peptidoglycan structure and dynamics as well as the study of protein-peptidoglycan interactions.
The complex and heterogeneous cell wall of the pathogenic bacterium Streptococcus pneumoniae is composed of peptidoglycan and a covalently attached wall teichoic acid. The net-like peptidoglycan is formed by glycan chains that are crosslinked by short peptides. We have developed a method to purify the glycan chains, and we show that they are longer than(More)
Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition(More)
Zinc homeostasis is critical for pathogen host colonization. Indeed, during invasion, Streptococcus pneumoniae has to finely regulate zinc transport to cope with a wide range of Zn(2+) concentrations within the various host niches. AdcAII was identified as a pneumococcal Zn(2+)-binding protein; its gene is present in an operon together with the phtD gene.(More)
Mammalian IRPs (iron regulatory proteins), IRP1 and IRP2, are cytosolic RNA-binding proteins that post-transcriptionally control the mRNA of proteins involved in storage, transport, and utilization of iron. In iron-replete cells, IRP2 undergoes degradation by the ubiquitin/proteasome pathway. Binding of haem to a 73aa-Domain (73-amino-acid domain) that is(More)