Catherine Bougault

Learn More
The trimeric influenza virus polymerase, comprising subunits PA, PB1 and PB2, is responsible for transcription and replication of the segmented viral RNA genome. Using a novel library-based screening technique called expression of soluble proteins by random incremental truncation (ESPRIT), we identified an independently folded C-terminal domain from PB2 and(More)
The use of residual dipolar couplings (RDCs) in the analysis of biomolecular structure and dynamics has expanded rapidly since its potential as a source of structural information on proteins was demonstrated in the mid 1990s.1,2 Of course, this work on proteins rested on applications to smaller biomolecular systems that occurred much earlier,3 and even(More)
Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition(More)
The rates of amide proton exchange in protein backbones are very useful reporters of accessibility and structural stability of specific residues and secondary structure elements. Measurement by monitoring changes in intensity of cross-peaks in standard (15)N-(1)H HSQC spectra as protons are replaced by solvent deuterons has become widely accepted. However,(More)
The complex and heterogeneous cell wall of the pathogenic bacterium Streptococcus pneumoniae is composed of peptidoglycan and a covalently attached wall teichoic acid. The net-like peptidoglycan is formed by glycan chains that are crosslinked by short peptides. We have developed a method to purify the glycan chains, and we show that they are longer than(More)
The bacterial cell wall maintains a cell's integrity while allowing growth and division. It is made up of peptidoglycan (PG), a biopolymer forming a multigigadalton bag-like structure, and, additionally in gram-positive bacteria, of covalently linked anionic polymers collectively called teichoic acids. These anionic polymers are thought to play important(More)
Solid-state NMR spectroscopy is applied to intact peptidoglycan sacculi of the Gram-negative bacterium Escherichia coli. High-quality solid-state NMR spectra allow atom-resolved investigation of the peptidoglycan structure and dynamics as well as the study of protein-peptidoglycan interactions.
The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved,(More)
Bacteria surround their cytoplasmic membrane with an essential, stress-bearing peptidoglycan (PG) layer. Growing and dividing cells expand their PG layer by using membrane-anchored PG synthases, which are guided by dynamic cytoskeletal elements. In Escherichia coli, growth of the mainly single-layered PG is also regulated by outer membrane-anchored(More)
Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+)(More)