Catherine Benoist-Lasselin

Learn More
Mutations in FGFR 1-3 genes account for various human craniosynostosis syndromes, while dwarfism syndromes have been ascribed exclusively to FGFR 3 mutations. However, the exact role of FGFR 1-3 genes in human skeletal development is not understood. Here we describe the expression pattern of FGFR 1-3 genes during human embryonic and fetal endochondral and(More)
Activating germline fibroblast growth factor receptor 3 (FGFR3) mutations cause achondroplasia (ACH), the most common form of human dwarfism and a spectrum of skeletal dysplasias. FGFR3 is a tyrosine kinase receptor and constitutive FGFR3 activation impairs endochondral ossification and triggers severe disorganization of the cartilage with shortening of(More)
Endochondral ossification is the process by which the appendicular skeleton, facial bones, vertebrae and medial clavicles are formed and relies on the tight control of chondrocyte maturation. Fibroblast growth factor receptor (FGFR)3 plays a role in bone development and maintenance and belongs to a family of proteins which differ in their ligand affinities(More)
A library of pyrido[2,3-d]pyrimidines was designed as inhibitors of FGFR3 tyrosine kinase allowing possible interactions with an unexploited region of the ATP binding-site. This library was built-up with an efficient step of click-chemistry giving easy access to triazole-based compounds bearing a large panel of substituents. Among the 27 analogues(More)
The fibroblast growth factor receptor 3 (FGFR3) plays a critical role in the regulation of endochondral ossification. Fgfr3 gain-of-function mutations cause achondroplasia, the most common form of dwarfism, and a spectrum of chondrodysplasias. Despite a significant number of studies on the role of FGFR3 in cartilage, to date, none has investigated the(More)
FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to an FGFR3-activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of(More)
Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of(More)
  • 1