Learn More
Integrative and conjugative elements (ICEs) are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer(More)
Integrative and conjugative elements (ICEs), a.k.a. conjugative transposons, are mobile genetic elements involved in many biological processes, including pathogenesis, symbiosis and the spread of antibiotic resistance. Unlike conjugative plasmids that are extra-chromosomal and replicate autonomously, ICEs are integrated in the chromosome and replicate(More)
Sequences between -332 and -39 upstream of the hilA promoter are required for repression of hilA. An unidentified repressor is thought to bind these upstream repressing sequences (URS) to inhibit hilA expression. Two AraC-like transcriptional regulators encoded on Salmonella pathogenicity island 1 (SPI1), HilC and HilD, bind to the URS to counteract the(More)
ICEBs1 is an integrative and conjugative element found in the chromosome of Bacillus subtilis. ICEBs1 encodes functions needed for its excision and transfer to recipient cells. We found that the ICEBs1 gene conE (formerly yddE) is required for conjugation and that conjugative transfer of ICEBs1 requires a conserved ATPase motif of ConE. ConE belongs to the(More)
Horizontal gene transfer contributes to evolution and the acquisition of new traits. In bacteria, horizontal gene transfer is often mediated by conjugative genetic elements that transfer directly from cell to cell. Integrative and conjugative elements (ICEs; also known as conjugative transposons) are mobile genetic elements that reside within a host genome(More)
Photonic-integrated circuits have emerged as a scalable platform for complex quantum systems. A central goal is to integrate single-photon detectors to reduce optical losses, latency and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection(More)
High-dimensional quantum key distribution using dispersive optics. " Physical Review A 87, no. 6 (June 2013). Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access(More)
BACKGROUND Virulence genes on Salmonella pathogenicity island 1 (SPI1) are coordinately regulated by HilA, a member of the OmpR/ToxR family of transcription factors. Although a great deal is known about the complex regulation of hilA gene expression, very little is known about the HilA protein. RESULTS In order to detect and localize the HilA protein in(More)
HilA activates the transcription of genes on Salmonella pathogenicity island 1 (SPI1), which encodes a type III secretion system (TTSS). Previous studies showed that transposon insertions in orgC, a gene located on SPI1, increase hilA expression. We characterize the orgC gene product and show that it is secreted via the SPI1 TTSS. We propose a model whereby(More)