Learn More
The treatment of advanced ovarian cancer with taxol is hindered by the development of drug resistance. The cellular target for taxol is the microtubule that is stabilized by the drug. Taxol preferentially binds to the beta subunit of tubulin of which there are six distinct isotypes in mammalian cells. We have used highly specific oligonucleotides and(More)
The mechanisms causing persistence of embryonal cells that later give rise to tumors is unknown. One tumorigenic factor in the embryonal childhood tumor neuroblastoma is the MYCN protooncogene. Here we show that normal mice developed neuroblast hyperplasia in paravertebral ganglia at birth that completely regressed by 2 weeks of age. In contrast, ganglia(More)
A series of taxol- and taxotere-resistant J774.2 cell lines has been characterized with respect to altered expression of beta-tubulin, the cellular target for these drugs. Vertebrates have six classes of beta-tubulin isotypes, each displaying a distinct pattern of expression. Although the functional significance of multiple beta-tubulins has not been fully(More)
Taxol is an antitumor drug with cytotoxic properties that correlate with its microtubule-stabilizing activities. It has been reported that taxol parallels lipopolysaccharide in its effects on the induction of tumor necrosis factor-alpha (TNF-alpha) gene expression in macrophages (C. Bogdan and A. Ding, J. Leukocyte Biol., 52: 119-121, 1992; C. L. Manthey,(More)
Pancreatic ductal adenocarcinoma (PDA) continues to be one of the deadliest cancers due to the absence of effective treatment. Curaxins are a class of small molecules with anti-cancer activity demonstrated in different models of cancer in mice. The lead curaxin compound, CBL0137, recently entered Phase I clinical trials. Curaxins modulate several important(More)
Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. We used a MYC target gene signature that predicts poor neuroblastoma prognosis to identify the histone chaperone FACT (facilitates chromatin transcription) as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression(More)
Effective eradication of cancer requires treatment directed against multiple targets. The p53 and nuclear factor κB (NF-κB) pathways are dysregulated in nearly all tumors, making them attractive targets for therapeutic activation and inhibition, respectively. We have isolated and structurally optimized small molecules, curaxins, that simultaneously activate(More)
BACKGROUND Human MYCN (hMYCN) oncogene amplification is a powerful predictor of treatment failure in childhood neuroblastoma, and dysregulation of hMYCN protein expression appears to be critically involved in the pathogenesis of this disease. We used hMYCN antisense (AS) oligonucleotides to investigate, both in vitro and in vivo, the therapeutic potential(More)
A major impediment to the successful use of Taxol in the treatment of cancer is the development of drug resistance. The major cellular target of Taxol is the microtubule that is comprised of alpha- and beta-tubulin heterodimers. Binding sites for Taxol have been delineated on the beta-tubulin subunit that has six isotypes. We have recently described(More)
The multidrug resistance-associated protein 1 (MRP1) has been closely linked to poor treatment response in several cancers, most notably neuroblastoma. Homozygous deletion of the MRP1 gene in primary murine neuroblastoma tumors resulted in increased sensitivity to MRP1 substrate drugs (vincristine, etoposide, and doxorubicin) compared with tumors containing(More)