Caterina Porto

Learn More
Pompe disease is a lysosomal storage disorder (LSD) caused by mutations in the gene that encodes acid alpha-glucosidase (GAA). Recently, small molecule pharmacological chaperones have been shown to increase protein stability and cellular levels for mutant lysosomal enzymes and have emerged as a new therapeutic strategy for the treatment of LSDs. In this(More)
In spite of the progress in the treatment of lysosomal storage diseases (LSDs), in some of these disorders the available therapies show limited efficacy and a need exists to identify novel therapeutic strategies. We studied the combination of enzyme replacement and enzyme enhancement by pharmacological chaperones in Pompe disease (PD), a metabolic myopathy(More)
We investigated the use of pharmacological chaperones for the therapy of Pompe disease, a metabolic myopathy due to mutations of the gene encoding the lysosomal hydrolase alpha-glucosidase (GAA) and characterized by generalized glycogen storage in cardiac and skeletal muscle. We studied the effects of two imino sugars, deoxynojirimycin (DNJ) and(More)
Fabry disease (FD) is an X-linked inherited disease due to alpha-galactosidase A (alpha-Gal A) deficiency and characterized by lysosomal storage of globotriaosylceramide (Gb3) and related neutral glycosphingolipids. Storage of these substrates results in multisystem manifestations, including renal failure, cardiomyopathy, premature myocardial infarctions,(More)
Anderson-Fabry disease is an X-linked lysosomal storage disorder resulting from the deficiency of the hydrolytic enzyme alpha galactosidase A, with consequent accumulation of globotrioasoyl ceramide in cells and tissues of the body, resulting in a multi-system pathology including end organ failure. In the classical phenotype, cardiac failure, renal failure(More)
BACKGROUND Pompe disease (PD) is a metabolic myopathy caused by alpha-glucosidase (GAA) deficiency and characterized by generalized glycogen storage. Heterogeneous GAA gene mutations result in wide phenotypic variability, ranging from the severe classic infantile presentation to the milder intermediate and late-onset forms. Enzyme replacement therapy (ERT)(More)
Pompe disease (PD) is a metabolic myopathy due to the deficiency of the lysosomal enzyme α-glucosidase (GAA). The only approved treatment for this disorder, enzyme replacement with recombinant human GAA (rhGAA), has shown limited therapeutic efficacy in some PD patients. Pharmacological chaperone therapy (PCT), either alone or in combination with enzyme(More)
Enzyme replacement therapy is currently the only approved treatment for Pompe disease, due to acid α-glucosidase deficiency. Clinical efficacy of this approach is variable, and more effective therapies are needed. We showed in preclinical studies that chaperones stabilize the recombinant enzyme used for enzyme replacement therapy. Here, we evaluated the(More)
We investigated the use of pharmacological chaperones for the therapy of Pompe disease, a metabolic myopathy due to mutations of the gene encoding the lysosomal hydrolase α-glucosidase (GAA) and characterized by generalized glycogen storage in cardiac and skeletal muscle. We studied the effects of two imino sugars, deoxynojirimycin (DNJ) and(More)
Fabry disease is an X-linked lysosomal disease caused by mutations of the alpha-galactosidase A (GLA) gene at chromosome subband Xq22.1. To date, more than 600 genetic mutations have been identified to determine the nature and frequency of the molecular lesions causing the classical and milder variant phenotypes and for precise carrier detection. We report(More)