Caterina Musetti

Learn More
The physiological role(s) played by G-quadruplexes renders these 'non-canonical' DNA secondary structures interesting new targets for therapeutic intervention. In particular, the search for ligands for selective recognition and stabilization of G-quadruplex arrangements has led to a number of novel targeted agents. An interesting approach is represented by(More)
Transition metal complexes allow fine tuning of DNA binding affinity and selectivity. Here we report on the nucleic acid recognition properties of a phenanthroline-based ligand coordinated to Ni(2+) or Cu(2+). The resulting complexes clearly bind to telomeric G-quadruplexes at different sites according to the nature of the bound metal ion.
Stabilization of G-quadruplex (G4) structures in promoters is a novel promising strategy to regulate gene expression at transcriptional and translational levels. c-KIT proto-oncogene encodes for a tyrosine kinase receptor. It is involved in several physiological processes, but it is also dysregulated in many diseases, including cancer. Two G-rich sequences(More)
The interactions of three representative gold(III) complexes with human telomeric DNA sequences were analysed using a variety of biophysical methods, including DNA melting, circular dichroism, SPR and ESI MS; remarkable interactions were highlighted for all tested complexes, although they were associated to significantly different binding profiles. The most(More)
  • 1