Caterina A. M. La Porta

Learn More
Tumors are defined by their intense proliferation, but sometimes cancer cells turn senescent and stop replicating. In the stochastic cancer model in which all cells are tumorigenic, senescence is seen as the result of random mutations, suggesting that it could represent a barrier to tumor growth. In the hierarchical cancer model a subset of the cells, the(More)
Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular(More)
We study the statistical properties of melanoma cell colonies grown in vitro by analyzing the results of crystal violet assays at different concentrations of initial plated cells and for different growth times. The distribution of colony sizes is described well by a continuous time branching process. To characterize the shape fluctuations of the colonies,(More)
The role of chemokines in tumor progression is an essential event that leads to homing and metastasis of tumor cells in a receptor-dependent, organ specific manner. In recent years, the involvement of CXCR6 and its ligand CXCL16 in tumor progression is becoming more evident. Here I review the recent literature on CXCR6/CXCL16. Since CXCR6 was shown recently(More)
Autocatalytic fibril nucleation has recently been proposed to be a determining factor for the spread of neurodegenerative diseases, but the same process could also be exploited to amplify minute quantities of protein aggregates in a diagnostic context. Recent advances in microfluidic technology allow analysis of protein aggregation in micron-scale samples(More)
  • 1