Catarina S. Nunes

Learn More
OBJECTIVE Part II of this research study is concerned with the development of a closed-loop simulation linking the patient model as well as the fuzzy relational classifier already introduced in Part I with a control algorithm. The overall architecture is in fact a system advisor, which provides information to the anaesthetist about the adequate(More)
Target controlled infusion (TCI) systems and computer data acquisition software are increasingly used in anesthesia. It was hypothesized that the use of such systems might allow retrieval of information useful to anticipate the effect-site concentrations of propofol at which patients would recover from anesthesia. The goal of the study was to identify(More)
— This paper presents three modeling techniques to predict return of consciousness (ROC) after general anesthesia, considering the effect concentration of the anesthetic drug at awakening. First, several clinical variables were statistically analysed to determine their correlation with the awakening concentration. The anesthetic and the analgesic mean dose(More)
Somatosensory evoked potentials (SEPs) have been linked to noxious activation and stimulus intensity. In this exploratory study we investigated the impact of anaesthetic drugs on SEPs and pain ratings, to assess their applicability as an objective measure of the nociception/anti-nociception balance. Following institutional approval and written informed(More)
The well-known Cerebral State Index (CSI) quantifies depth of anesthesia and is traditionally modeled with Hill equation and propofol effect-site concentration (Ce). This work brings out two novelties: introduction of electromyogram (EMG) and use of fuzzy logic models with ANFIS optimized parameters. The data were collected from dogs (n=27) during routine(More)
OBJECTIVE The first part of this research relates to two strands: classification of depth of anaesthesia (DOA) and the modelling of patient's vital signs. METHODS AND MATERIAL First, a fuzzy relational classifier was developed to classify a set of wavelet-extracted features from the auditory evoked potential (AEP) into different levels of DOA. Second, a(More)
Anaesthesia can be defined as the lack of response and recall to noxious stimuli. It includes paralysis (muscle-relaxation), unconsciousness (depth of anaesthesia) and analgesia (pain relief). Depth of anaesthesia (DOA) is hard to define, and hence to measure accurately. Attention has turned to auditory evoked potentials (AEP) in the electroencephalogram(More)
BACKGROUND α2-Adrenoceptor agonists are used frequently in human and veterinary anesthesia as sedative/analgesic drugs. However, they can impair cognition. Little is known about the concentration-dependent effects of α2-adrenoceptor agonists on synaptic plasticity, the neurophysiological basis of learning and memory. Therefore, we investigated the effects(More)
Hypnotic drug administration causes alterations in the electroencephalogram (EEG) in a dose-dependent manner. These changes cannot be identified easily in the raw EEG, therefore EEG based indices were adopted for assessing depth of anaesthesia (DoA). This study examines several indices for estimating dogs' DoA. Data (EEG, clinical end-points) were collected(More)