Learn More
Heterotrimeric G-protein signaling systems are activated via cell surface receptors possessing the seven-membrane span motif. Several observations suggest the existence of other modes of stimulus input to heterotrimeric G-proteins. As part of an overall effort to identify such proteins we developed a functional screen based upon the pheromone response(More)
Utilizing a functional screen in the yeast Saccharomyces cerevisiae we identified mammalian proteins that activate heterotrimeric G-protein signaling pathways in a receptor-independent fashion. One of the identified activators, termed AGS1 (for activator of G-protein signaling), is a human Ras-related G-protein that defines a distinct subgroup of the Ras(More)
G protein-coupled receptor kinases (GRKs) are key modulators of G protein-coupled receptor signalling. Increasing evidence points to the occurrence of complex mechanisms able to modulate the subcellular localization, activity and expression levels of GRKs, revealing new functional interactions of these kinases with different cellular proteins and(More)
GRK2 is a ubiquitous member of the G protein-coupled receptor kinase (GRK) family that appears to play a central, integrative role in signal transduction cascades. GRKs participate together with arrestins in the regulation of G protein-coupled receptors (GPCR), a family of hundreds of membrane proteins of key physiological and pharmacological importance, by(More)
The G protein-coupled receptor kinases (GRKs) participate with arrestins in the regulation and signal propagation of multiple G protein-coupled receptors (GPCR) of key physiological and pharmacological relevance in the cardiovascular system. The complex mechanisms of regulation of GRK expression, degradation and function are being unveiled gradually. The(More)
G protein-coupled receptor kinases (GRKs) and arrestins are key participants in the canonical pathways leading to phosphorylation-dependent GPCR desensitization, endocytosis, intracellular trafficking and resensitization as well as in the modulation of important intracellular signaling cascades by GPCR. Novel studies have revealed a(More)
Guanine nucleotide-binding proteins, G proteins, propagate incoming messages from receptors to effector proteins. They switch from an inactive to active state by exchanging a GDP molecule for GTP, and they return to the inactive form by hydrolyzing GTP to GDP. Small monomeric G proteins, such as Ras, are involved in controlling cell proliferation,(More)
Purified bovine brain G-protein was used in a solution phase assay to identify membrane-associated proteins that influenced the activation of heterotrimeric G-proteins. Detergent-solubilized membrane extracts from the neuroblastoma-glioma cell hybrid NG108-15, but not the parent C6B4 glioma cell line, increased [35S]GTPgammaS binding to purified G-protein(More)
Increasing evidences point to G protein-coupled receptor kinases (GRKs), a subfamily of protein kinase A/G/C-like kinases, as relevant players in cancer progression, in a cell-type and tumor-specific way. Alterations in the expression and/or activity of particular GRKs have been identified in several types of tumors, and demonstrated to modulate the(More)
A ligand-independent activator of heterotrimeric brain G-protein was partially purified from detergent-solubilized extracts of the neuroblastoma-glioma cell hybrid NG108-15. The G-protein activator (NG108-15 G-protein activator (NG-GPA)) increased [(35)S]guanosine 5'-O-(thiotriphosphate) ([(35)S]GTPgammaS) to purified brain G-protein in a(More)