Cataldo Tarricone

Learn More
Gastropod mollusks have been used for over 2500 years to produce the "Tyrian purple" dye made famous by the Phoenicians. This dye is constituted of mixed bromine-substituted indigo and indirubin isomers. Among these, the new natural product 6-bromoindirubin and its synthetic, cell-permeable derivative, 6-bromoindirubin-3'-oxime (BIO), display remarkable(More)
Small G proteins are GTP-dependent molecular switches that regulate numerous cellular functions. They can be classified into homologous subfamilies that are broadly associated with specific biological processes. Cross-talk between small G-protein families has an important role in signalling, but the mechanism by which it occurs is poorly understood. The(More)
Mutations in the LIS1 gene cause lissencephaly, a human neuronal migration disorder. LIS1 binds dynein and the dynein-associated proteins Nde1 (formerly known as NudE), Ndel1 (formerly known as NUDEL), and CLIP-170, as well as the catalytic alpha dimers of brain cytosolic platelet activating factor acetylhydrolase (PAF-AH). The mechanism coupling the two(More)
Ndel1 and Nde1 are homologous and evolutionarily conserved proteins, with critical roles in cell division, neuronal migration, and other physiological phenomena. These functions are dependent on their interactions with the retrograde microtubule motor dynein and with its regulator Lis1--a product of the causal gene for isolated lissencephaly sequence (ILS)(More)
Mutations in Lis1 cause classical lissencephaly, a developmental brain abnormality characterized by defects in neuronal positioning. Over the last decade, a clear link has been forged between Lis1 and the microtubule motor cytoplasmic dynein. Substantial evidence indicates that Lis1 functions in a highly conserved pathway with dynein to regulate neuronal(More)
  • 1