Casey W. Dunn

Learn More
Long-held ideas regarding the evolutionary relationships among animals have recently been upended by sometimes controversial hypotheses based largely on insights from molecular data. These new hypotheses include a clade of moulting animals (Ecdysozoa) and the close relationship of the lophophorates to molluscs and annelids (Lophotrochozoa). Many(More)
A clear picture of animal relationships is a prerequisite to understand how the morphological and ecological diversity of animals evolved over time. Among others, the placement of the acoelomorph flatworms, Acoela and Nemertodermatida, has fundamental implications for the origin and evolution of various animal organ systems. Their position, however, has(More)
SUMMARY Phyutility provides a set of phyloinformatics tools for summarizing and manipulating phylogenetic trees, manipulating molecular data and retrieving data from NCBI. Its simple command-line interface allows for easy integration into scripted analyses, and is able to handle large datasets with an integrated database. AVAILABILITY Phyutility,(More)
Molluscs (snails, octopuses, clams and their relatives) have a great disparity of body plans and, among the animals, only arthropods surpass them in species number. This diversity has made Mollusca one of the best-studied groups of animals, yet their evolutionary relationships remain poorly resolved. Open questions have important implications for the origin(More)
An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister(More)
Nearly all metazoans show signs of bilaterality, yet it is believed the bilaterians arose from radially symmetric forms hundreds of millions of years ago. Cnidarians (corals, sea anemones, and "jellyfish") diverged from other animals before the radiation of the Bilateria. They are diploblastic and are often characterized as being radially symmetrical around(More)
Despite rapid advances in the study of metazoan evolutionary history [1], phylogenomic analyses have so far neglected a number of microscopic lineages that possess a unique combination of characters and are thus informative for our understanding of morphological evolution. Chief among these lineages are the recently described animal groups Micrognathozoa(More)
Metazoa comprises 35–40 phyla that include some 1.3 million described species. Phylogenetic analyses of metazoan interrelationships have progressed in the past two decades from those based on morphology and/or targeted-gene approaches using single and then multiple loci to the more recent phylogenomic approaches that use hundreds or thousands of genes from(More)
In recent years, scientists have made remarkable progress reconstructing the animal phylogeny. There is broad agreement regarding many deep animal relationships, including the monophyly of animals, Bilateria, Protostomia, Ecdysozoa, and Spiralia. This stability now allows researchers to articulate the diminishing number of remaining questions in terms of(More)
Despite advances in phylogenetic methods, there are still a number of enigmatic phyla whose affinities remain poorly resolved. One of the most recalcitrant of these is a group of small predatory marine invertebrates, the chaetognaths (arrow worms). Resolution of the phylogenetic position of the chaetognaths is key for reconstructing the evolutionary history(More)