Learn More
Since the completion of the genome sequence of Saccharomyces cerevisiae in 1996 (refs 1, 2), there has been a large increase in complete genome sequences, accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies(More)
A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the(More)
Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae,(More)
BACKGROUND Transposable elements are found in the genomes of nearly all eukaryotes. The recent completion of the Release 3 euchromatic genomic sequence of Drosophila melanogaster by the Berkeley Drosophila Genome Project has provided precise sequence for the repetitive elements in the Drosophila euchromatin. We have used this genomic sequence to describe(More)
Wolbachia are maternally inherited symbiotic bacteria, commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. The evolutionary history of endosymbionts like Wolbachia can be revealed by integrating information on infection status in natural populations with patterns of sequence(More)
UNLABELLED Despite increasing numbers of computational tools developed to predict cis-regulatory sequences, the availability of high-quality datasets of transcription factor binding sites limits advances in the bioinformatics of gene regulation. Here we present such a dataset based on a systematic literature curation and genome annotation of DNase I(More)
BACKGROUND It is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most informative species and features of genome evolution for comparison remain to be determined. RESULTS We analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3(More)
BACKGROUND Numerous tools have been developed to align genomic sequences. However, their relative performance in specific applications remains poorly characterized. Alignments of protein-coding sequences typically have been benchmarked against "correct" alignments inferred from structural data. For noncoding sequences, where such independent validation is(More)
The identification and study of the cis-regulatory elements that control gene expression are important areas of biological research, but few resources exist to facilitate large-scale bioinformatics studies of cis-regulation in metazoan species. Drosophila melanogaster, with its well-annotated genome, exceptional resources for comparative genomics and long(More)
Lack of knowledge about how regulatory regions evolve in relation to their structure-function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module-the even-skipped stripe 2(More)