Learn More
A molecular approach, based on the detection of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large subunit genes, was applied to investigate the distribution and diversity of autotrophic bacteria in groundwater systems. DNA extracts from 48 sampling stations, including a variety of pristine and polluted, shallow and deep-subsurface groundwater(More)
HeiTS, the Heidelberg Transport System, is a multimedia communication system for real-time delivery of digital audio and video. HeiTS operates on top of guaranteed-performance networks that apply resource reservation techniques. To make HeiTS also work with networks for which no reservation scheme can be realized (for example, Ethernet or existing(More)
The microbial communities of in situ reactor columns degrading benzene with sulfate as an electron acceptor were analyzed based on clone libraries and terminal restriction fragment length polymorphism fingerprinting of PCR-amplified 16S rRNA genes. The columns were filled with either lava granules or sand particles and percolated with groundwater from a(More)
Carbon isotope fractionation factors were determined with the dichloro elimination of gamma-hexachlorocyclohexane (gamma-HCH) by the sulfate-reducing bacteria Desulfococcus multivorans DSM 2059 and Desulfovibrio gigas DSM 1382. Both strains are known for cometabolic HCH dechlorination. Degradation experiments with gamma-HCH in concentrations of 22-25 gammaM(More)
Toluene degradation by several pure and mixed microbial cultures was investigated bytwo-dimensional compound specific isotope analysis (2D-CSIA). For most of the cultures, the respective toluene degradation pathway and toluene attacking enzymatic step was known. The slope of the linear regression for hydrogen (delta delta(2)H) vs. carbon (delta delta(13)C)(More)
The flow of carbon under sulfate-reducing conditions within a benzene-mineralizing enrichment culture was analysed using fully labelled [13C6]-benzene. Over 180 days of incubation, 95% of added 13C-benzene was released as 13C-carbon dioxide. DNA extracted from cultures that had degraded different amounts of unlabelled or 13C-labelled benzene was centrifuged(More)
Multi-element compound-specific isotope fractionation (ME-CSIA) has become a state-of-the-art approach for identifying biotransformation reactions. In the last decade, several studies focused on the combined analysis of carbon and hydrogen stable isotopes upon biodegradation of hydrocarbons due to its widespread environmental occurrence as contaminants,(More)
In anaerobic bacteria, most aromatic growth substrates are channelled into the benzoyl-coenzyme A (CoA) degradation pathway where the aromatic ring is dearomatized and cleaved into an aliphatic thiol ester. The initial step of this pathway is catalysed by dearomatizing benzoyl-CoA reductases yielding the two electron-reduction product,(More)
Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is(More)
We determined stable carbon and hydrogen isotope fractionation factors for anaerobic degradation of xylene isomers by several pure and mixed cultures. All cultures initiated xylene degradation by the addition of fumarate to a methyl moiety, as is known from the literature or verified by the presence of methylbenzylsuccinates as metabolic intermediates.(More)